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Abstract Exact order independent transparency

(OIT) techniques capture all fragments during ras-

terization. The fragments are then sorted per-pixel

by depth and composited them in order using alpha

transparency. The sorting stage is a bottleneck for

high depth complexity scenes, taking 70–95% of the

total time for those investigated. In this paper we show

that typical shader based sorting speed is impacted

by local memory latency and occupancy. We present

and discuss the use of both registers and an external

merge sort in register-based block sort to better use

the memory hierarchy of the GPU for improved OIT

rendering performance. This approach builds upon

backwards memory allocation, achieving an OIT ren-

dering speed up to 1.7× that of the best previous

method and 6.3× that of the common straight forward

OIT implementation. In some cases the sorting stage is

reduced to no longer be the dominant OIT component.

Keywords sorting · OIT · transparency · shaders ·
performance · registers · register-based block sort

1 Introduction

Transparency is a common graphics effect used for ren-

dering particles, glass, antialiasing objects that might

otherwise be drawn with the alpha test such as fences,

foliage, billboards etc., and to see through objects but

keep their spatial relativity to internal features or other

objects.

Transparency rendering is a non-trivial problem in

computer graphics. Unlike opaque rendering, where

hidden surfaces are discarded using the z-buffer, all

visible transparent surfaces contribute colour to the

final image. Moreover the contribution is order depen-

dent as each surface partially obscures farther ones, so

surfaces must be sorted for a correct result.

Many 3D applications forgo accuracy and render

transparency without sorting or only partially sorting,
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for example sorting per-object. This is because com-

pletely sorting per-triangle is expensive and difficult,

requiring splitting triangles in cases of intersection or

cyclical overlapping. Order-independent transparency

(OIT) allows geometry to be rasterized in arbitrary or-

der, sorting surfaces as fragments in image space. Our

focus is exact OIT, for which sorting is central, although

we note there are approximate OIT techniques which

use data reduction and trade accuracy for speed [17,

13].

Figure 1: Power plant model, with false colouring to

show backwards memory allocation intervals.

Complex scenes, such as the power plant in Figure 1,

generally have high depth complexity, with many over-

lapping triangles. These scenes, which we term deep, are

a focus as fragment sorting in OIT quickly becomes a

bottleneck for them. This is partly due to the computa-

tional complexity of sorting being super-linear, unlike

the other OIT operations which are linear. Thus, for

deep scenes on the order of hundreds to a thousand

fragments, the limiting problem in OIT performance is

that of sorting many small lists — small in the context

of sorting but still deep in relation to OIT. Current

approaches perform sorting in local memory as global

memory has much higher latency. Using local memory

improves performance, however it has some drawbacks

and further improvements are possible. Our core con-

tributions are as follows:
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• We show that OIT sorting performance is limited

by local memory latency and low occupancy issues,

discussed in Section 2.

• We use registers as another, faster, level of mem-

ory in the GPU memory hierarchy to store and sort

fragments for shallow pixels.

• To apply this to deep pixels we introduce register-

based block sort (RBS), an external merge sort, dis-

cussed in Section 3.

• We use backwards memory allocation [9] in combi-

nation with RBS to both provide a strategy pattern

for various sort sizes and to improve occupancy. The

speed increase from the combination is greater than

the product of their individual increases.

• We implement RBS and other sorts in CUDA for a

comparison to the GLSL implementations.

• Finally, we compare the performance of RBS with

previous OIT compositing approaches.

Our platform uses OpenGL+GLSL and an Nvidia Ti-

tan graphics card.

2 Background

The first stage in exact OIT is capturing every visible

fragment up to the first fully opaque one for each pixel.

Because the GPU generates fragments in parallel the

issue of race conditions is raised. Methods of fragment

capture and construction of a data structure to store

them are briefly discussed in Section 2.1.

After all fragments are captured and saved, they are

sorted and composited in the resolve stage. Both sort-

ing and compositing are performed in the same pass

for OIT, meaning the sorted order is used only once

and does not have to be saved, whereas other applica-

tions may benefit from saving the sorted fragments for

reuse. The resolve stage is commonly implemented in

a fragment shader with a single full-screen pass. The

costly operations are (1) reading the captured frag-

ments stored in global memory, (2) storing the data

locally as is required for a fast sorting operation, (3) the

sorting operation itself. The final step is an inexpensive

compositing iteration through the sorted fragments.

The fragment capture and sorting operations used in

OIT are fundamental building blocks which are increas-

ingly also being used in other applications, for example

translucency, ambient occlusion [1], CSG [6], metaball

rendering [18] and indirect illumination [19,5,20]. The

growing number of applications emphasises the impor-

tance of efficient approaches.

OIT uses the GPU in its normal graphics/raster-

izer mode for capture in a fragment shader. The resolve

stage is then commonly performed in another fragment

shader, however an alternative is to use GPU com-

pute capabilities via CUDA. CUDA ultimately runs on

the same hardware, although its memory and program-

ming model differs from that of shaders. For this rea-

son we also compare our shader based approaches with

CUDA implementations, and discuss different perfor-

mance characteristics.

2.1 Fragment Capture

Transparency rendering is a mature concept, however

its hardware acceleration is relatively new. Depth

peeling [3] is among the first GPU accelerated OIT

techniques. It and variations capture fragments in

sorted order, but render the scene many times —

proportional to the captured depth complexity. A more

recent class of techniques capture fragments in just

one rendering pass, made possible by the introduction

of scattered writes and atomic operations to graphics

hardware. Sorting fragments during capture, as is

done for example in the k-buffer [2], Hybrid Trans-

parency [13] and the HA-buffer [10], has some benefits

including bounded memory, the possibility of fragment

rejection and fragment reduction/merging. However,

these methods are approximate or use many duplicate

global memory accesses which are expensive for deep

scenes and can be avoided by capturing all fragments

first and sorting later.

There are two main competing approaches to cap-

turing and saving all fragments during rasterization:

per-pixel linked lists [22] (PPLLs) and packed per-pixel

arrays (PPPAs) [15,11,12,14,8].

PPLLs are built with the use of a global atomic

counter for node allocation. Nodes are inserted into

lists via an atomic exchange of per-pixel head point-

ers. If insufficient memory is allocated for the nodes,

data is lost or a re-render is required. PPPAs use an

initial fragment counting pass and prefix sum scan to

tightly pack, or linearize the fragment data. Despite re-

quiring an extra pass of the geometry it has potential

to improve capture performance for some scenes. There

is no contention on a single atomic counter, the data

location can be manipulated for better coalescing and

there is no next pointer overhead. PPLLs are used for

this paper as the focus is the resolve stage, but we men-

tion both as OIT performance can be affected due to

differences in memory layout.

After building PPLLs fragment data is read, sorted

and composited in a single pass, usually by render-

ing a full screen quad and operating in a fragment

shader. The straight forward and common approach,

which is later used as a baseline for comparing tech-
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niques, sorts the fragments in local memory using in-

sertion sort, shown in Listing 1.

vec2 frags[MAX_FRAGS];

... populate frags from global memory

for (int j = 1; j < fragCount; ++j)

{

vec2 key = frags[j];

int i = j - 1;

while (i >= 0 && frags[i].y > key.y)

{

frags[i+1] = frags[i];

--i;

}

frags[i+1] = key;

}

... blend frags and write result

Listing 1: Baseline implementation with insertion sort.

Previous work [8,9] has shown significant benefits

from the choice of the sorting algorithm, particularly

that simpler O(n2) algorithms such as insertion sort

perform better for shallower pixels and O(nlogn) al-

gorithms such as merge sort perform better for deeper

pixels.

2.2 Coalescing

Sequential memory access is typically much faster than

random access. Achieving sequential access in a SIMD

environment is more complex as a group of threads

must address memory in similar locations in parallel.

Individual threads accessing separate contiguous mem-

ory can in fact damage performance.

Our observation is that PPLLs provide good mem-

ory locality, although this may seem counterintuitive.

The atomic counter appears to increment sequentially

for a group of SIMD threads. Since the threads write

fragments (and next pointers) to the index given by

the counter, writes will also be sequential across the

group and hence coalesced. Although this does not hold

for reading, we believe the locality for reading is not

bad. Rasterization generates breadth-first layers of frag-

ments (unlike a ray producing depth first intersections),

and it is not unlikely that adjacent pixel reads will also

coalesce as each thread steps through its linked list.

We speculate variations in the raster pattern and small

polygons inhibit this by adding spatial disorder to the

links.

2.3 Registers

Arrays and variables in shader languages such as GLSL

are placed in registers or local memory, both of which

are on-chip as shown in Figure 2.

Instruction Unit
Processors

Registers

Local Memory

Global Memory

L2 Cache

Shared/L1 Not Indexable

Figure 2: Broad GPU architecture.

Registers are much faster than local memory, which

is much faster than global memory. Local memory used

in shaders is equivalent to CUDA’s shared/L1 memory

in location. In comparison, CUDA’s local memory is

stored in global memory and cached in L1. This caching

avoids the local memory occupancy issues of shader lan-

guages but hides the management of the memory.

Registers are significantly faster than local memory,

and explicitly managing their use for performance rea-

sons is an established concept in sorting on CPUs [16].

A drawback is the inability to dynamically index regis-

ters, as one would an array. Thus special programming

techniques are needed to make use of registers as an-

other, faster, level of memory.

Compilers can optimize an array into registers if

indexing is known at compile time. Consider the two

almost identical examples in Listing 2 with the inter-

mediate SASS output from the GLSL compiler. The

first loop iterates up to a dynamic value. It cannot be

unrolled and registers cannot be used to store array a,

seen by the REP..ENDREP loop and lmem local memory

declaration. The second loop is bounded by a compile-

time constant and is unrolled, providing compile time

indexing and allowing the array to be placed in regis-

ters. Note the nested IF statements and R0, R1, R2

declarations.
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uniform int n; uniform int n;

int a[8]; int a[8];

... ...

for (int i = 0; for (int i = 0;

i < n; i < 8 && i < n;

++i) ++i)

{ {

a[i] = 42; a[i] = 42;

} }

produces: produces:

TEMP lmem[8]; TEMP R0, R1, R2;

... TEMP RC, HC;

MOV.S R0.x, {0, 0, 0, 0}; ...

REP.S ; SLT.S R2.y, {0, 0, 0, 0}.x, c[0].x;

SLT.S R0.z, R0.x, c[0].x; MOV.U.CC RC.x, -R2.y;

SEQ.U R0.z, -R0, {0, 0, 0, 0}.x; IF NE.x;

MOV.U.CC RC.x, -R0.z; SLT.S R2.y, {1, 0, 0, 0}.x, c[0].x;

BRK (GT.x); MOV.U.CC RC.x, -R2.y;

MOV.U R0.z, R0.x; MOV.S R0.y, {42, 0, 0, 0}.x;

MOV.S lmem[R0.z].x, {42, 0, 0, 0}; IF NE.x;

ADD.S R0.x, R0, {1, 0, 0, 0}; SLT.S R2.y, {2, 0, 0, 0}.x, c[0].x;

ENDREP; MOV.U.CC RC.x, -R2.y;

MOV.S R0.z, {42, 0, 0, 0}.x;

IF NE.x;

SLT.S R2.y, {3, 0, 0, 0}.x, c[0].x;

MOV.U.CC RC.x, -R2.y;

MOV.S R0.x, {42, 0, 0, 0};

...

ENDIF;

ENDIF;

ENDIF;

Listing 2: Loop unrolling and register use.

The same loop unrolling and use of registers can be

achieved by explicitly generating the source code for an

unrolled loop, which then allows the use of individual

variables instead of an array, for example int a0, a1,

etc.

When using lmem the Nvidia GLSL compiler ap-
pears to pad array elements to 16 bytes while the four

dimensional components of registers can be used indi-

vidually. Vector component indexing may be used to

better pack small elements in local memory, e.g.
ivec4 packedArray[8];

packedArray[i>>2][i&3] = 42;

although this increases number of shader instructions

and we have experienced difficulty using it for OIT.

Potential performance gains from the example in

Listing 2 include faster execution of unrolled code, lower

latency access of registers and the increased occupancy

from tight packing.

Unrolling loops can be difficult to do efficiently and

can produce large amounts of code that can quickly

reach shader program size limits. In some cases just

unrolling the inner loops or simplifying the algorithm

can allow use of registers and greatly reduce the number

of instructions generated.

2.4 Sort Networks

A sort network is a set of hard coded compare and swap

operations which sort the input in an oblivious manner.

Sort networks apply naturally to execution in registers,

whereas to get comparison sorts to do so needs modifi-

cation and unrolling. However, a drawback of sort net-

works is a fixed input size. One solution to enable sort-

ing variable sizes is to generate a sort network for each

possible size, however this is not practical given shader

instruction limits. Another is to use a larger network

than is needed and pad the unused element keys with

high values.

Sort networks are commonly discussed in the con-

text of parallelization as some compare and swap

operations can be executed in parallel [4]. This reduces

the runtime complexity from the network’s compare

and swap count to its depth, the length of the min-

imum/critical path through the dependence graph.

With CUDA’s shared memory or compute shaders,

collaboratively sorting a single pixel’s fragments with

multiple threads is an interesting idea, however we leave

this to future work and instead discuss sort networks

in relation to their implementation with registers.

2.5 External Sorting

External sorts were originally the solution to the prob-

lem of sorting data too large to fit in main memory.

To reduce expense of sorting in external memory (such

as disk), data is partitioned into blocks which can be

sorted in faster memory. Blocks are then merged until

the sort is complete. The concept abstracts to any sys-

tem with a memory hierarchy, where successive levels

are typically faster but smaller.

Similarly to main memory and disk external sorts,

sorting algorithms have been adapted to better use lev-

els of cache, and finally registers [21,4]. Unlike sorting

small lists in OIT, these approaches commonly target

sorting a single large amount of data.

2.6 Occupancy

As previously mentioned global memory has high la-

tency. Instead of the processor blocking until comple-

tion, other threads are executed in an attempt to hide

the latency and increase throughput. GPUs keep all

active threads resident in registers and local memory,

avoiding expensive thread context switches. Occupancy

is a measure of how many threads can be active at once,

and is limited by ratio of per-thread required to avail-

able resources. Note that every thread reserves the same
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amount of resources, defined by the shader program.

Low occupancy becomes a problem when a program

uses enough resources that the number of active threads

is too small for the GPU to adequately hide operation

latency and be kept busy.

Poor occupancy is a significant performance fac-

tor in the resolve pass, which occurs particularly in

the baseline OIT approach. Figure 3 shows an example

where only a small number of per-pixel threads fit in

local memory due to a conservative high allocation. To

support more fragments, both local memory allocation

and global memory access increase, reducing occupancy

which amplifies the impact of slow global memory ac-

cess.

Unused Memory

Allocated Thread Memory

Available Local Memory

Fragments

Figure 3: Local memory limited occupancy - threads

declare a large amount of memory, limiting the total

possible concurrently resident threads.

One strategy to address low occupancy in OIT

is backwards memory allocation (BMA) [9]. Pixels

are grouped into depth complexity intervals of pow-

ers of two, which in the case of PPLLs requires the

small added cost of computing per-pixel fragment

counts. Each interval is then processed in batches,

using pre-compiled shaders with array sizes matching

the maximum depth complexity of each interval. The

stencil buffer is necessary to facilitate this, with its

unique ability to mask a thread from being scheduled.

A seeming alternative is to exit from shaders outside

the correct interval, but in that case the threads are

already active, consuming resources.

BMA is able to significantly improve occupancy and

performance for shallow pixels, however it remains an

issue for deep pixels. Another benefit of BMA is strat-

egy pattern like per-interval shader optimizations with

no branching overhead. In particular, a sort can be com-

piled to target just the fragment counts in each interval

and corner cases such as zero fragments can be ignored.

CUDA has no stencil buffer, or equivalent method

of masking thread execution, making a BMA type im-

plementation for CUDA difficult. Also given the local

memory model does not affect occupancy, BMA may

only be of use to CUDA in cases of varying shared mem-

ory usage.

2.7 GLSL Functions

Functions are an important aspect of modular program-

ming. For example a sorting function may take the ar-

ray to be sorted as an argument, for use with different

arrays. However, GLSL function arguments are copied

in at call time and out before function exit, depend-

ing on the in/out qualifiers, to avoid potential alias-

ing issues [7]. This is a problem for large arguments

such as arrays in which case the whole array is du-

plicated. Apart from the copy operation cost the local

memory requirements double, also affecting occupancy

and thereby performance. Using global scope variables,

for arrays in particular, and generating code via macros

is more predictable and stable.

3 Register-Based Block Sort

Our contribution applies to the resolve stage of OIT,

without relaxing the constraint of an exact result. The

resolve stage is limited both by high local memory la-

tency and occupancy. To reduce the amount of local

memory access, we introduce a sorting algorithm oper-

ating on data in registers, referred to as register-based

sort (RS). As there are relatively few available regis-

ters, higher numbers of fragments are partitioned into

blocks which are sorted using RS and then merged. We

call this process, essentially an external sort type ap-

proach, register-based block sort (RBS). RBS has sig-

nificant synergy when implemented with BMA, which

is discussed in Section 4.

The first step to enable sorting in registers is

unrolling an iteration through the pixel’s linked list

and reading fragments directly into registers, as List-

ing 3 demonstrates. Due to the constant arguments to

LOAD FRAG, the elements of the registers array will

in fact be placed in register memory, as intended. This

is only possible in the case of shallow pixels where all

fragments can fit. Writing loops with constant bounds

would allow the compiler to generate similar code.

However, the most portable and reliable method to

achieve this is by manually unrolling using explicit

branching.

A straight forward way to sort values in the registers

array is using sort networks, unfortunately they oper-

ate on a fixed number of elements and the number of

fragments, fragCount, is variable. Alternatively, com-

pletely unrolling comparison sorts is not always prac-
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vec2 registers[MAX_REGISTERS];

#define LOAD_FRAG(i) \

if (PPLL_HAS()) \

{ \

++fragCount; \

registers[i] = PPLL_LOAD(); \

PPLL_NEXT();

int fragCount = 0;

PPLL_INIT(pixel);

LOAD_FRAG(0)

LOAD_FRAG(1)

LOAD_FRAG(2)

...
}

}

}

Listing 3: Reading PPLLs into registers.

tical as previously mentioned. Our solution lies in the

middle, unrolling an insertion sort that uses swaps in-

stead of the optimization in Listing 1 which shifts val-

ues and then performs just one swap. Unrolling just

the inner loop of insertion sort, with bounds shown in

Listing 4, allows registers to be used. There are much

fewer instructions generated by not unrolling the outer

loop and, compile time is less. However, unrolling the

outer loop removes the need for the i <= j guard, re-

placing MAX REGISTERS-1 with the now-constant j, al-

lowing each insertion to stop when complete and gives

better performance.

The result is shown in Listing 5, which can also be

viewed as a sort network that uses conditionals to im-

prove performance and avoid padding. Outer condition-

als allow the network to shrink to the appropriate size,

for which an insertion sort network in particular works

well. Inner conditionals stop inserting elements when

the correct place has been found. Despite the over-

head of branching this is found to be an improvement

over a straight sort network, possibly due to the typical

shallow weighted depth complexity distribution under-

filling arrays. Finally, when combining with BMA, pre-

processing directives are used to produce a sorting al-

gorithm sorting up to just the interval size, rather than

the global maximum.

for (int j = 1; j < fragCount; ++j)

{

for (int i = MAX_REGISTERS-1; i > 0; --i)

if (i <= j && COMPARE(i-1, i))

SWAP(i-1, i);

}

Listing 4: Unrolling the inner loop of insertion sort.

Apart from insertion, there are other sort networks

such as bitonic which have lower depth and computa-

tional complexity. However, dynamic sizing is an issue

and our experiments show insertion to be faster.

As performance is significantly affected by fragment

data size via occupancy, global memory transfer, sort-

ing speed, etc., RGBA colour is packed into 32 bits with

uintBitsToFloat. A fragment is then 64 bits, 32 colour

and 32 depth which is the sort key. We find this to give

sufficient colour precision and is a significant perfor-

mance advantage. With fragment data any larger, indi-

rect sorting using an index/pointer and depth is likely

to be more efficient.

A minor drawback of unrolling loops is the consid-

erable compile time. This can be alleviated to some

extent by caching compiled shaders, for example via

ARB get program binary in OpenGL.

For deep pixels there are more fragments than can

be placed in registers. This is where we use an external

sort type approach, visualized in Figure 4. Fragments

are partitioned into blocks of size MAX REGISTERS,

which we set to 32, copied to registers and sorted using

RS as above. Sorted fragments are then written back

to either local or global memory. Reading all fragments

into registers before or progressively during the sort

does not affect performance significantly.

With the fragment data partially sorted in blocks, a

merge is performed, outlined in Listing 6. To avoid the

heavy external memory bandwidth of pairwise merging,

a single k-way merge is used. This is done with a re-

peated linear search through the candidate elements of

each block until there are none left. While this is faster

//insert 2nd element if exists

if (fragCount > 1)

{

if (COMPARE(0, 1)) //sort 1st and 2nd

SWAP(0, 1);

}

//insert 3rd if exists

if (fragCount > 2)

{

if (COMPARE(1, 2))

{

//first swap

SWAP(1, 2);

//not in order, so continue

if (COMPARE(0, 1))

SWAP(0, 1); //second swap

}

}

... insert 4th etc.
}

}

Listing 5: Fully unrolled insertion sort using registers

(RS).
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registerSort32(offset, count)

max() composite() output

Fragments

merge cache

pad?

Figure 4: Sorting blocks of fragments per-pixel and

compositing during an n-way merge.

for the scenes investigated, a heap may be beneficial for

larger k. When implemented with BMA the maximum

k, MAX K, used for loop unrolling is never more than a

factor of two above k.

After sorting blocks, the registers array is reused

to cache the candidates from each block. A second set

of registers, blockIdx, keeps track of the candidates’

original locations. Reading blocks from tail to head the

number of remaining elements in each block can be cal-

culated implicitly, simplifying the corner case of a par-

tially full final block.

As mentioned earlier, in OIT the sorted fragment

data is only needed once, for blending, which is per-

formed during the merge and the sorted result does not

need to be saved.

int blockIdx[MAX_K];

for (int i = 0; i < MAX_K && i < k; ++i)

{

//set blockIdx[i] to block tail

//read initial candidates into registers[i]

}

for (int i = 0; i < fragCount; ++i)

{

for (int j = 0; j < MAX_K && j < k; ++j)

{

//find fragment with max depth f

//and its block index b

}

for (int j = 0; j < MAX_K && j < k; ++j)

{

//decrement blockIdx[b] and, if exists,

// read data at blockIdx[b] into registers[b]

}

//blend f into final colour

}

Listing 6: Merging sorted blocks.

4 Results

In this section we compare and discuss performance of

various exact OIT techniques, differing only in the re-

solve pass and keeping fragment capture using PPLLs

constant. Our platform is a GTX Titan, a high end

graphics card chosen for the trend of modern GPU ar-

chitectures combining graphics and compute capabili-

ties. All rendering is performed at 1920 × 1080 resolu-

tion.

We use a number of scenes and views, shown in Fig-

ure 5, to investigate the performance of different resolve

stage techniques:

• The power plant, a model with high overall depth

complexity and a depth complexity distribution

characteristic typical of many scenes which is

weighted towards the shallow end.

• The atrium, a moderately deep scene in which frag-

ment capture is similar in time to the resolve pass.

• The hairball, with a more consistent depth complex-

ity, also notable for its sorted geometry that is com-

mon for modelling packages to produce when writ-

ing a single mesh.

• A generated array of planes in sorted order, with

front and back views to investigate best and worst

case sorting.

For each view, we compare performance of RBS

with previous OIT sorting methods. Due to a significant

number of technique permutations, we use the follow-

ing naming scheme. The BASE prefix refers to the use

of a conservative-maximum sized local array in GLSL

shaders without the use of BMA. With the suffix IS,

BASE-IS is the baseline implementation using insertion
sort. We add the option to dynamically choose merge

sort for deep pixels (> 32), as in [9], referred to with the

suffix IMS, i.e. BASE-IMS. Sorting is performed in reg-

isters in the RBS versions, which can be implemented

using either local memory (L) to store the fragment

blocks, or global memory directly (G) in which case

BMA is unnecessary. Each of IS, IMS and RBS-L have

also been implemented using CUDA, which stores its

local memory data in global memory and caches in L1.

To reduce occupancy issues in shaders caused by the

local array size, these methods are also implemented

with BMA (Section 2.6), e.g. BMA-IS, grouping pix-

els by depth complexity intervals and executing shader

programs specific to each interval. Intervals are set to

powers of two, starting at 8, i.e. 1–8, 9–16, 17–32, etc.

Intervals 32–64 and up in BMA-IMS use merge sort.

We set MAX FRAGS, or limit BMA intervals, to the next

power of two above the peak depth complexity, pro-

viding a generous near best case for the BASE imple-

mentations, as they do not adapt to shallow views of a
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(a) V1 (b) V2 (c) V3

(d) V1 (f) Fwd (h) Fwd

(e) V2 (g) Rev (i) Rev

Figure 5: (a)–(c) views of the power plant, (d) and (e) views of the atrium, views inside the hairball producing (f)

forward and (g) reverse sorted fragments, views of the sorted grid of textured planes giving (h) forward and (i)

reverse order. False colour is used to show depth complexity relative to MAX FRAGS.

deep scene. RS, without any block merging, can be used

for shallow pixels below 32 fragments, sorting entirely

in registers and removing the need for a local array.

This occurs in view 2 of the atrium for BASE-RBS-L,

however it is possible in all views when BMA is used

for intervals up to 32, demonstrating the advantage of

combining RBS and BMA.

A summary of the performance results is presented

in Table 1. Both the total OIT rendering time (T) and

just the time for the resolve stage (R) are shown. The

resolve stage is of interest as this is where the compared

techniques operate. Fragment capture time, given by

T−R, is broadly constant for all views, although BMA

requires per-pixel counts which add a small computa-

tion overhead. In addition to speedup factors compared

to the baseline technique we show a “best of the rest”

comparison for BMA-RBS-L, i.e. a comparison between

BMA-RBS-L and the fastest non-RBS technique.

Average Best

Total/Resolve T R T R

BASE-IS 1.0 1.0 1.0 1.0

BASE-IMS 1.0 1.0 2.1 2.2

BASE-RBS-L 1.7 1.8 4.9 5.4

RBS-G 1.8 2.0 5.4 6.0

CUDA-IS 1.6 1.8 4.6 5.4

CUDA-IMS 2.2 2.5 5.9 7.5

CUDA-RBS-L 2.4 2.8 7.8 9.3

BMA-IS 1.6 1.8 2.7 3.0

BMA-IMS 1.7 2.0 3.9 4.6

BMA-RBS-L 3.0 4.2 6.3 8.7

BMA-RBS-L* 1.1 1.4 1.7 2.1

Table 1: Average and best case speedup factors (×)

compared to the baseline technique. BMA-RBS-L* is a

comparison to the fastest non-RBS method. Both total

(T) and resolve pass only (R) times are included.
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As can be seen BMA-RBS-L is the fastest overall

with an average total performance increase of 3.0× over

the baseline across the scenes investigated, and best

case of 6.3× where it is only beaten by another RBS-L

implementation using CUDA. Compared to the fastest

non-RBS techniques, BMA-RBS-L improves total per-

formance by 1.15× on average, and up to 1.7× in the

best case. Note that in practice only one technique can

be used whereas this comparison is against the next

best, which ever it may be. BMA-RBS-L more than

doubles the resolve pass speed compared to BMA-IMS,

from [9]. The improvement from RBS is primarily from

using registers as much as possible, including the use of

blocking and merging in the case of deep pixels.

Individually, BMA provides an average 1.6×
speedup and BASE-RBS-L, without BMA, provides an

average 1.7× speedup. Together though, RBS-L with

BMA provide an average 3.0× speedup which is greater

than the 2.6× product of their individual increases.

Detailed rendering times for each view are given

in Table 2, with the fastest techniques for each view

highlighted green. Table 3 shows the speedup factor

over the baseline technique and in addition, the bottom

row shows the speedup of BMA-RBS-L over the fastest

non-RBS technique, highlighted blue. BMA-RBS-L im-

proves OIT rendering speed for all views and achieves

the highest speed in most.

Using just registers and global memory, RBS-G per-

forms well for all but the hairball scene, and particu-

larly well for the atrium and planes scenes, suggesting

a hybrid which uses registers, local memory and global

memory may be able to integrate the improvements.

The hairball and synthetic planes scenes test al-

ready sorted and reverse sorted fragment order, for

which insertion sort sorts in n and n2 operations re-

spectively, explaining the large difference between Fwd

and Rev views for the IS techniques. Although RS in

RBS also uses insertion sort for the blocks, it differs

by km and km2 operations where m is the block size,

MAX REGISTERS, and is made possible by the k-way

merge, which always uses kn operations. As m2 � n2

the performance difference between sorted directions

for RBS is relatively small.

In the power plant and atrium scenes the resolve

stage has been reduced significantly as the dominant

component of the total time. Particularly in the atrium

and view 3 of the power plant, where it is now similar

to or less than capture time.

5 Conclusion

We have discussed a number of performance affecting

characteristics of GPU based sorting algorithms in the

context of OIT. We have shown how this can be lever-

aged by being aware of the memory hierarchy and ma-

nipulating low level operations from a high level shading

language, to provide fast register-based sorting which

is particularly beneficial for deep scenes. By unrolling

loops and using a sort with sort network characteris-

tics, fragments can be placed and sorted in registers

for shallow pixels. This method can be extended by

sorting blocks of fragments with registers and merging

(RBS). Investigation into support for even larger and

deeper scenes many include using a heap for large k-way

merges and hierarchical merge passes when k becomes

too big for a single merge, but is left for future work.

We have shown RBS alone provides an average 1.7×
total performance increase over the baseline, the stan-

dard approach of insertion sort in local memory, for the

scenes investigated. RBS works in synergy with BMA

to provide faster fragment sorting than the product of

their individual increases. Overall, BMA-RBS-L pro-

vides an average 3.0× and up to a 6.3× total OIT ren-

dering performance increase compared to the baseline.

The resolve stage is now no longer the dominant

factor in the mid-range cases such as the atrium scene

and is on par with the capture stage even for deep

scenes such as the power plant. In general, interactive

or even realtime speeds are becoming a possibility for

deep scenes that were previously impractical to render,

both for exact OIT and other applications which also

use sorted fragment data.
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