
The definitive version is available at http://diglib.eg.org/ and
http://onlinelibrary.wiley.com/.

Pacific Graphics (2013), pp. 1–6
B. Levy, X. Tong, and K. Yin (Editors)

Backwards Memory Allocation and Improved OIT

P. Knowles, G. Leach, and F. Zambetta

RMIT University, Melbourne

(a) (b) (c)

Figure 1: (a) The Sponza Atrium, (b) Smoke and (c) Power Plant scenes, rendered with exact transparency at 26, 12 and 5 FPS
respectively using backwards memory allocation with 1680×1050 resolution and GeForce GTX 670.

Abstract
Order independent transparency (OIT) is a graphics technique which sorts surfaces per-pixel for correct alpha
blending. The sorting stage requires relatively large amounts of temporary memory in shaders that is usually
conservatively allocated at a maximum, which impacts occupancy and performance. To address this issue we
introduce backwards memory allocation (BMA), a strategy which creates a set of shaders with varying static
allocation size in lieu of dynamic allocation. Batches of threads are then executed directly with the appropriate
shader. This also allows optimizations for each generated shader such as choosing the sorting algorithm based on
allocation size with no additional overhead. BMA gives both a more flexible OIT (BMA-OIT) for dynamic scenes
of varying depth complexity and up to a 3× speedup.

1. Introduction

Order-independent transparency (OIT) is a graphics tech-
nique which sorts surfaces per-pixel instead of per-polygon,
thus independent of polygon rendering order. This is similar
to the image based way the depth buffer solves hidden sur-
face removal and has significant programming advantages.
The underlying technique must capture and store all frag-
ments during rasterization, which itself is non-trivial and is
discussed in Section 2. Apart from transparency, the sorted
fragment data is expected to be useful in other graphics ap-
plications.

Fragment sorting becomes a bottleneck for OIT in scenes

with a depth complexity of approximately 32 or more frag-
ments per pixel [KLZ12]. A significant sorting time factor
in current implementations is the need to allocate a conser-
vative maximum, or “worst case”, amount of local memory
in shaders in which to perform the sort. The performance
impact arises due to local memory usage affecting GPU oc-
cupancy, discussed in Section 3. In this work, shaders refers
to GLSL/HLSL programs.

We introduce backwards memory allocation (BMA) in
Section 3, a strategy to allocate nearly — within a factor
of two — the right amount of memory per thread and reduce
the performance impact of large local memory requirements
in shaders. We demonstrate BMA, applying it to the sort-

submitted to Pacific Graphics (2013)

http://diglib.eg.org/
http://onlinelibrary.wiley.com/


2 P. Knowles & G. Leach & F. Zambetta / Backwards Memory Allocation and Improved OIT

ing stage of OIT (BMA-OIT) and show up to a 3× speedup.
While BMA works well with OIT we believe it also has po-
tential for other rendering applications.

2. Order-Independent Transparency

OIT with graphics hardware was first accomplished via
depth peeling [Eve01], which required many render-
ing passes of the geometry. The introduction of ran-
dom writes to global graphics memory and atomic op-
erations in graphics hardware allows all rasterized frag-
ments to be computed and stored in a single ren-
dering pass. These features are available in OpenGL
versions 3.2 (ARB_shader_image_load_store) and
4.1 (ARB_shader_atomic_counters). The fragments
can be stored in various ways: (1) as a 3D array [LHLW09]
where (x,y) per-pixel fragments are stacked along z, (2) in
per-pixel linked lists [YHGT10] or (3) linearly packed in a
1D array [Pee08]. In this work we use per-pixel linked lists,
usually requiring one rendering pass.

Figure 2: Per-pixel linked lists.

To construct per-pixel linked lists during rasterization,
scattered writes are performed in the fragment shader in-
stead of writing to the framebuffer. The process is visual-
ized in Figure 2. Firstly, a global-scope atomic counter is
incremented for a unique fragment storage index. An array
of head-pointers, one for each pixel, is used to mark the start
of each list. A next pointer is stored at the same index as the
fragment, either with the fragment or in a parallel array. The
fragment/next pointer node is inserted into the front of the
list via an atomic exchange as follows:

head = imageAtomicExchange(headPtrs, pixel,
index).r;

imageStore(nextPtrs, index, head);
imageStore(data, index, fragmentData);

The atomic counter contains the number of fragments gen-
erated after rendering. If there is not enough memory to
store all fragments, data is lost and a resize and re-render
is required. Hardware-supported atomic counters in recent
GPUs have little overhead and the non-sequential storage
has not been observed to affect OIT performance signifi-
cantly [KLZ12]. The linked list data is used for both OIT
and BMA-OIT, although BMA-OIT requires additional per-
pixel fragment counts.

To render transparency, fragments are composited using

alpha blending after sorting. Only one pass through the frag-
ments is needed for alpha blending so storing the sorted re-
sult is unnecessary. Both sorting and compositing can be per-
formed in the same shader, for example:

vec4 frags[MAX_FRAGS];
node = imageLoad(headPtrs, pixel).r;
while (node && count < MAX_FRAGS)
{

frags[count++] = imageLoad(data, node);
node = imageLoad(nextPtrs, node).r;

}
... sort frags
... composite frags

3. Backwards Memory Allocation

Fragments require sorting before computing transparency,
and this quickly becomes the bottleneck for non-trivial
scenes. Sorting is performed by a shader in local memory
as global memory access has high latency. However, using
local memory can be expensive as it can impact occupancy.
BMA attempts to address this, but first we describe the prob-
lem in more detail.

Local memory in shaders exhibits the behaviour of resid-
ing in reserved memory equivalent to L1 cache and CUDA’s
shared memory, shared across each SIMD processor. SIMD
processors swap execution of threads to keep busy and hide
latency. To avoid copy operations for these context switches,
resources for all active threads must remain resident dur-
ing their lifetime. Therefore the number of possible active
threads (“occupancy”) is limited by the available resources
and the portion individual threads require. Thus, as the al-
located local memory size increases, the number of possi-
ble concurrently active threads in each SIMD processor de-
creases. Latency cannot be hidden without enough active
threads in a SIMD processor and in extreme cases, there may
not even be enough threads to fill the SIMD processor.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

100

200

300

400

500

600

Memory (bytes)

T
im

e
 p

e
r 

fr
a

m
e

 (
m

s)

2 4 6 8 10 12 14 16 18
0

5

10

15

20

Memory (KB)

T
im

e
 p

e
r 

fr
a

m
e

 (
m

s)

Figure 3: Effect on performance of increasing local memory
usage in shaders.

The effect of increasing local memory usage in shaders is
shown in Figure 3, where the following fragment shader is
executed, rendering a full screen polygon to an 800× 600
window 64 times with varying SIZE. The uniform variable
zero is required to keep the compiler from optimizing out

submitted to Pacific Graphics (2013)



P. Knowles & G. Leach & F. Zambetta / Backwards Memory Allocation and Improved OIT 3

the array. Note the stepped shape of the graph produced by
memory-limited occupancy. This demonstrates how impor-
tant it can be to maintain low local memory usage in shaders.

#define SIZE set_by_application
vec4 myArray[SIZE];
uniform int zero;
out vec4 fragColour;
void main()
{

fragColour = myArray[zero];
}

Dynamic local memory allocation is unavailable in
shaders so a common approach, when running out of mem-
ory would be unacceptable, is to allocate a maximum. For
example, significant artifacts can occur in OIT when there
is not enough memory (see Figure 6, Section 4) and allo-
cating a maximum introduces an unnecessary performance
overhead as much of it is unused. OIT is a good example
as scenes commonly have a low overall depth complexity
relative to the maximum and just a few pixels require a lot
more memory for sorting, as shown in Figures 5 and 7 (Sec-
tion 4). This performance characteristic is expected to occur
in general for applications with both varying and occupancy-
limiting local memory requirements

We introduce BMA to address the performance penalty of
large local memory allocation in the cases where it is under-
used. BMA groups threads by their memory requirements at
run-time and execute each using a different shader program
with appropriate local memory defined. We term this strat-
egy backwards memory allocation primarily as permutations
of shaders must be pre-compiled with fixed memory, revers-
ing the memory demand/request order of common dynamic
allocation. Secondly, the concept is also somewhat unusual
compared to typical CPU programming practice in the con-
text of local memory. The term binned or batched memory
allocation is an accurate alternative.

BMA can increase occupancy for threads with varying lo-
cal memory usage and has potential for improving SIMD co-
herency since similar threads are executed together, although
this has not been explicitly observed in our transparency ex-
periments.

Our implementation of BMA-OIT begins by defining a set
of allocation intervals to group per-pixel threads, each with
varying numbers of fragments to process and hence vary-
ing local memory requirements. Shader programs to sort and
composite fragments are then generated for each interval.
Given the steps in Figure 3, we choose intervals in powers of
two beginning at eight, for example: 1-8, 9-16, 17-32, 33-64,
65-128. The last interval processes pixels of 65 fragments
and up but only sorts the first 128 and discards the rest. Note
that zero is omitted from the first interval to ignore pixels
without fragments. We have found exhaustively optimizing
these intervals for specific views produces similarly expo-
nentially spaced values and gives performance increases of

the order of 5%, but in general the powers of two approach
works well.

The BMA-OIT shader structure is as follows, where
MAX_FRAGS is set to the upper bound of each interval:

#define MAX_FRAGS set_by_application
vec4 frags[MAX_FRAGS];
int pixel = PIXEL_ADDR(gl_FragCoord.xy);
int count = loadFragments(pixel);
sortFragments(count);
fragColour = compositeFragments(count);

Per-pixel fragment counts are required for BMA-OIT,
which are recorded while rendering the scene in addition
to the linked lists of fragment data. We use imageAtom-
icAdd to compute counts, although additive blending and
incrementing the stencil buffer are alternatives.

The stencil buffer is then used to process only pixels with
fragment counts in each interval by the appropriate shader
program. The process is summarized as follows:

1. Render the scene to linked lists, storing all fragments and
computing per-pixel counts.

2. For each fragment count interval,

a. Clear stencil buffer.
b. Render a full-screen polygon to the stencil buffer, dis-

carding for pixels with fragment counts outside the in-
terval.

c. Bind the OIT sort-and-composite shader for the cur-
rent interval and render another full-screen polygon,
using the stencil buffer to mask out discarded pixels
in the previous step.

Using the stencil buffer instead of calling discard in the frag-
ment shader is fundamental to BMA as only shaders for the
correct intervals are executed. An alternative to using the
stencil buffer is to compute lists of pixel IDs within each
range and execute threads directly, although we have found
the stencil buffer performs better.

Incrementing the stencil buffer while rendering the scene
can be faster than imageAtomicAdd and avoids clearing
and re-rendering the mask for each interval. Unfortunately
this method, unlike the one outlined above, imposes a limit
of 255 fragments per-pixel. If stencil buffer incrementing is
used, BMA-OIT can be computed by rendering full-screen
polygons for intervals in descending order with the follow-
ing stencil attributes:

glStencilFunc(GL_LEQUAL, intervalMin, 0xFF);
glStencilOp(GL_KEEP, GL_ZERO, GL_ZERO);

This processes all pixels within the current interval and re-
moves them from following passes by zeroing the stencil
value.

With fragment lists already grouped into depth com-
plexity intervals and separate shader programs, only small
changes are required to optimize each program for its inter-

submitted to Pacific Graphics (2013)



4 P. Knowles & G. Leach & F. Zambetta / Backwards Memory Allocation and Improved OIT

val, such as using sorting algorithms appropriate to the frag-
ment count range. While this is also possible dynamically
in standard OIT, we have observed better results with BMA.
This is discussed further in Section 4.

4. Results

All performance results vary scene depth complexity in scale
and distribution with a fixed 1680 × 1050 resolution. We
compare performance of standard OIT and BMA-OIT using
a benchmark approach. We use the three scenes in Figure 1,
also used in previous work, including a fly-through of the
Atrium. Depth complexity is a major factor in the perfor-
mance of OIT and is visualized for the scenes in Figure 4.
The distribution within each scene is further shown in Fig-
ure 5. All results were obtained using an NVIDIA GeForce
GTX 670.

0 50 100 150 200 250 300
1

10

100

1000

10000

100000

1000000

10000000

Atrium
Smoke
Power Plant

Depth Complexity

P
ix

e
l C

o
un

t

Figure 5: Depth complexity histogram of the three scenes in
Figure 1. Note the log scale — most pixels have a relatively
low depth complexity.

Exceeding the maximum sorting memory and discarding
fragments can produce wildly incorrect results, as Figure 6
shows. This is why it is important to conservatively allo-
cate a large amount of memory for standard OIT and handle
the worst case complexity, even though this maximum is not
used in many views.

(a) (b)

Figure 6: Potential artifacts due to an insufficient sorting ar-
ray size. Image (a) sorts up to 32 fragments, missing window
and fence fragment and (b) correctly sorts up to 64.

BMA increases occupancy during the execution of threads
with low local memory usage relative to the maximum.
BMA-OIT adapts to the current depth complexity on a per-
pixel basis. Table 1 shows the speedup BMA-OIT provides

is a result of processing the lower depth complexity intervals
faster. BMA-OIT gives the speed of smaller allocation (for
both various areas of a static view and various views of a
scene) and still supports correct results where higher alloca-
tion is required.

Interval Atrium Smoke Power Plant
8 1.14 2.11 2.14

16 0.97 1.18 2.74
32 0.99 1.67 3.78
64 1.00 2.32 3.03

128 1.68 1.99
256 1.00 1.48
512 1.00

Table 1: Estimated speedup BMA-OIT gives over OIT at
each interval. As OIT does not have intervals, minor error
may exist due to measuring per-interval thread execution.

Table 2 shows rendering times for three scenes using OIT
and BMA-OIT with varying local memory allocation. Note
that for the Power Plant, 256 fragments is insufficient for
some pixels. Sorting 1024 fragments was not possible using
the GTX 670. Results include using different sorting algo-
rithms based on fragment count, which we discuss later.

Comparing the highest Max Alloc interval in which pixels
exist shows a fair comparison between OIT and BMA-OIT
within the same view. In this case BMA-OIT performs the
same as OIT for the Atrium scene and gives a 2.08× and
2.93× speedup for the Smoke and Power Plant scenes.

The overhead for BMA-OIT is computing per-fragment
counts and executing OIT for pixels in batches. From Ta-
ble 2, supporting an additional Max Alloc interval (in which
no pixels exist so no computation is performed) adds an
overhead of 0.5% and 0.1% for the Atrium and Smoke
scenes respectively. In contrast, standard OIT rendering in-
creases by 151% and 176% for the additional and unneces-
sary increase.

Atrium Smoke Power Plant
Total Polys 279,178 13,468 12,701,147
Total Frags 14,449,340 10,072,458 18,479,488
Peak Depth 46 136 278
Max Alloc 64 128 256 512 256 512
OIT (ms) 37.6 53.8 167.7 273.6 372.0 604.0
BMA-OIT (ms) 37.6 37.8 80.7 80.9 203.0 206.0
Speedup (×) 1.00 1.42 2.08 3.38 1.83 2.93

Table 2: Comparing standard OIT and BMA-OIT rendering
times. Max Alloc is the local memory allocated for OIT and
upper limit for BMA-OIT.

The Atrium fly-through in Figure 7 shows the perfor-
mance of OIT and BMA-OIT as the scene and its depth com-
plexity distribution changes. The 33–64 and 65–128 frag-
ment count intervals, shown separately in Figure 8, have rel-
atively few pixels and there are no pixels in the 129–256

submitted to Pacific Graphics (2013)



P. Knowles & G. Leach & F. Zambetta / Backwards Memory Allocation and Improved OIT 5

0

50

(a)
0

150

(b)
0

300

(c)

Figure 4: Depth complexity of the three scenes in Figure 1.

range. It can be seen that increasing OIT local memory to
correctly support up to 128 fragments for the peak depth
complexity significantly reduces performance in all views
— by a factor of around 1.4×.

0.0 K 

5.0 K 

10.0 K 

15.0 K 

20.0 K 
128 
64 

Frame

P
 i x

 e 
l C

 o
 u

 n t
 

0 200 400 600 800 1000 1200

Figure 8: Separated depth complexity during the flythrough
in Figure 7, showing only ranges 33–64 and 65–128.

The sorting algorithm chosen has a significant affect on
OIT performance. Figure 9 shows the performance of dif-
ferent sorting algorithms relative to insertion sort for sorting
and compositing different BMA intervals in the Power Plant
scene. Based on these and similar results we use insertion
sort for depth complexities of 16 and less, and merge sort
for higher depth complexities. In some cases shell sort may
give a small performance benefit, for example the 33-64 in-
terval. BMA-OIT can compile the program for each interval
that only uses the best sorting algorithm without overhead. In
contrast standard OIT must branch at runtime, potentially af-
fecting thread coherency, however this still provides a signif-
icant benefit. For standard OIT we found using insertion sort
for intervals up to 64 and merge sort for higher intervals to
be most effective. Note that the threshold at which different
sorting algorithms become beneficial is different when se-
lecting dynamically. The above optimizations increase stan-
dard OIT performance by 1.5× and 1.3× for the Smoke and
Power Plant scenes respectively while BMA-OIT performs
2.3× and 2.1× better. Previous results include these sorting
improvements.

5. Conclusion

Large and unused local memory allocation can significantly
impact shader performance. We have introduced BMA to re-

8 16 32 64 128 256 512
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Insertion

Shell

Heap

Merge

Fragment Count Intervals
T

im
e

 R
e

la
tiv

e
 to

 In
se

rt
io

n

Figure 9: Sorting algorithm time relative to insertion sort
at different fragment count intervals for BMA-OIT with the
Power Plant scene.

duce this effect, demonstrated its use by applying it to OIT
and achieved up to a 3× speedup. Moreover, BMA-OIT is
more flexible allowing fast rendering times for low depth
complexity scenes while supporting correct rendering of
high depth complexity scenes. In contrast, without BMA the
OIT result is either rendered incorrectly for high depth com-
plexity scenes or performance suffers with low depth com-
plexity scenes.

We have shown choosing the sorting algorithm for OIT
based on the fragment count at a per-pixel level improves
performance significantly and works especially well with
BMA-OIT, as the optimization is applied for each BMA in-
terval shader and not dynamically.

This work is part of many recent compound improvements
bringing exact transparency rendering of complex scenes,
such as the power plant, to within interactive speeds.

While we have demonstrated BMA with OIT, it may be of
benefit to other applications where occupancy is also limited
by varying and unavoidably large local memory usage.

References
[Eve01] EVERITT C.: Interactive Order-Independent Trans-

parency. Tech. rep., NVIDIA Corporation, 2001. 2

[KLZ12] KNOWLES P., LEACH G., ZAMBETTA F.: Efficient lay-
ered fragment buffer techniques. In OpenGL Insights, Cozzi P.,

submitted to Pacific Graphics (2013)



6 P. Knowles & G. Leach & F. Zambetta / Backwards Memory Allocation and Improved OIT

0 200 400 600 800 1000 1200

0

20

40

60

80

100

120

Frame Number

F
ra

m
e

T
im

e
(m

s
)

0.0 M

0.5 M

1.0 M

1.5 M

2.0 M

8

16

32

64

128

P
ix

e
lC

o
u
n
t

BMA 256

OIT 256

OIT 128

OIT 64

Figure 7: A fly-through of the Sponza Atrium, showing each frames rendering time for standard OIT and BMA-OIT. The
background area shows the number of pixels with depth complexity in each range. Note range 8 does not include zero depth
complexity.

Riccio C., (Eds.). CRC Press, July 2012, pp. 279–292. http:
//www.openglinsights.com/. 1, 2

[LHLW09] LIU F., HUANG M.-C., LIU X.-H., WU E.-H.:
Single pass depth peeling via cuda rasterizer. In SIG-
GRAPH 2009: Talks (New York, NY, USA, 2009), SIGGRAPH
’09, ACM, pp. 79:1–79:1. URL: http://doi.acm.org/
10.1145/1597990.1598069, doi:http://doi.acm.
org/10.1145/1597990.1598069. 2

[Pee08] PEEPER C.: Prefix sum pass to linearize a-buffer storage,
patent application, microsoft corp., December 2008. 2

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THI-
BIEROZ N.: Real-time concurrent linked list construc-
tion on the gpu. Comput. Graph. Forum 29, 4 (2010),
1297–1304. URL: http://dblp.uni-trier.de/db/
journals/cgf/cgf29.html#YangHGT10. 2

submitted to Pacific Graphics (2013)

http://www.openglinsights.com/
http://www.openglinsights.com/
http://doi.acm.org/10.1145/1597990.1598069
http://doi.acm.org/10.1145/1597990.1598069
http://dx.doi.org/http://doi.acm.org/10.1145/1597990.1598069
http://dx.doi.org/http://doi.acm.org/10.1145/1597990.1598069
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#YangHGT10
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#YangHGT10

