GPGPU Based Particle System Simulation®

Pyarelal Knowles
Supervisor: Geoff Leach

School of Computer Science and Information Technology
RMIT University
Melbourne, AUSTRALIA

November 12, 2009

Abstract

General purpose computing on graphics processing units, known as GPGPU but now
often referred to as GPU computing, is the approach of performing computation on the
GPU instead of the CPU. GPU computing has been made possible by the increasing pro-
grammability and performance of GPUs. The programmability of GPUs is accessed via
shader programs, typically written in a C like language. Until recently shader programs
and shader languages have been targeted (naturally) towards graphics applications. How-
ever there has been increasing interest in using GPUs for non graphics computationally
intensive tasks. This has lead to new languages and tools for GPU development which are
more general than shaders. For example, Nvidia released its compute unified device archi-
tecture (CUDA) in 2007. CUDA allows what is essentially general purpose C code to be
executed on GPU processors, without the graphics orientation found in shader languages.
More recently Open Compute Language (OpenCL) has been proposed for GPU computing,
and more generally for CPU-GPU hybrid computing.

This research aims to compare performance of particle system computation between
CPU and GPU based implementations. Particle systems differ in their types of inter-
particle interaction. The types of interaction between particles has a direct effect on the
computational complexity of the particle system and therefore affects performance. As such,
for the purpose of this research, we identify three distinct categories of particle systems: no
interaction, short range interaction (collisions) and long range interaction. We implemented
each of these types of particle systems for the CPU (including multicore versions) and the
GPU (using CUDA). We have found that a significant performance increase may be obtained
from GPGPU based compared with CPU based particle system computation.

*Honours research paper

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

Contents
1 Introduction 3
2 Background 5
2.1 Particle Systems 5
2.1.1 NIPS . . . e 5
2.1.2 SRIPS e 5
2.1.3 LRIPS e 6
2.2 Rendering 6
2.3 Computer Architecture e 7
2.4 Graphics Pipeline 8
2.5 CPUEvolution e 9
2.6 GPU Evolution e 10
2.7 Stream Processing 10
2.8 Shaders 10
2.9 GPU Computing e 11
2.10 CUDA e 11
2.11 GPU Based Physics e 13
212 OpenCL o o 13
2.13 Single vs Double Precision 13
2.14 Performance e e 14
2.15 Parallel Programming 14
2.16 Spatial Data Structures 15
2.17 Numerical Integration 15
2.18 Memory Requirements Lo 17
3 Related Work 18
3.1 Discussion e 19
4 Implementation 19
4.1 Test Environment L 20
5 Results 20
5.1 NIPS . . o e 21
5.2 LRIPS e 23
5.3 SRIPS . . . o e 24
5.4 Particle Systems and Graphicso 26
5.5 Single and Double Precision 27
5.6 Comparing GPUs e 28
5.7 Programming Complexity 28
5.8 Comparing Implementations 29
5.9 Summary e e 30
6 Conclusion 31
7 Future work 31

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

1 Introduction

Figure 1: Star Trek IT: The Wrath of Kahn - The genesis effect.

The term particle system in the context of computer graphics was coined in 1983 by William
T. Reeves [Ree83] when he used particle systems in the movie “Star Trek IT: The Wrath of Kahn”
to make the genesis effect (Figure 1). Before that, even though not referred to as such, particle
systems were used in some of the very first video games, for example “Spacewar!” in 1962 used
particles to display explosions (Figure 2). Since then the use of particle systems in games has
continued to increase and they are used in most games today in some way. Games are required
to have fast execution in order to have smooth animation and responsive interaction. Thus any
particle systems used must be able to be computed quickly which is why games today typically
use non interacting, or independent particles. These are considerably less computationally
intensive than systems of interacting particles which can have more realism. Not all particle
systems run in “real-time” such as in games. For example movies such as “Star Trek II”
calculate the system and pre-render each frame of animation.

Figure 2: Early video game, Spacewar!

Particle systems can be used to model an object as a cloud of primitives that define its
volume [Ree83]. Each particle has a position in space and moves based on initial position,
velocity and acceleration values along with forces. The collection of particles come together as
a whole to represent shapes. There are many uses in games and graphics for particle systems
including water, smoke, dust, fire or cloud and even hair and cloth simulation, as shown in
Figure 3.

While games and graphics are the primary interest in our investigation, particle systems
also have many uses in science which this research also applies to. For example cosmological
simulations use particle systems of more than tens of millions of particles [Ber98] to study the-
ories about the creation of the universe among many others. Particle simulations are used in
research for large and costly fusion reactors [TZ99]. Medical training simulations use particle

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

(e) Dust/Smoke (ID’s Rage) (f) Hair [VMTO04]

Figure 3: Particle System Examples

systems to simulate blood in virtual surgery [MSTO04]. Particle systems are used in molecular
modeling [LHvdS01]. Many of these examples require particle systems of higher computational
complexity and larger numbers for accurate simulation and realism. The computational com-
plexity of a particle system has a fundamental impact on performance and hence limits the size
of the particle system.

There is a need for larger and more realistic particle systems, which will be more com-
putationally intensive. As the performance of particle systems increases with both algorithm
and hardware, particle system applications will improve. For example, games today typically
do not perform fluid simulation using particle systems, yet with the introduction of GPGPU
computation, the game physics engine PhysX can now perform substantial real-time fluid sim-
ulation [Har08], which means this approach will begin to emerge.

Research Questions

Particle systems have traditionally been implemented on CPUs. However due to a recent
improvement in the evolution of GPU architecture they have begun to be computed using
GPUs. It is important to know what the implications are in moving to a GPU processing
environment. Previous research shows that the GPU has the potential to process some types
of particle systems much faster than some CPU implementations. However before we start
processing particle systems on the graphics card we should be aware of the intricacies and
consequences in different situations, including performance trade-offs.

We investigate CPU and GPU particle system computation in order to answer the following
questions:

1. What are the performance improvements, if any, from the use of GPUs instead of CPUs
for particle systems computation?

'From: http://people.csail.mit.edu/acornejo/html/cloth.htm
2From: http://area.autodesk.com/blogs/duncan/pouring_water_with_nparticles

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

2. How does the introduction of a graphics rendering load (common to games and graphics)
affect these results?

3. What are the programming issues involved with GPU computing for particle systems in
particular?

Primarily, this research seeks to determine the circumstances under which it is more ap-
propriate to compute particle systems using the GPU and when use of the CPU is preferable.
Results will be focused towards games and graphics however it is intended that findings will
also be relevant to broader applications.

2 Background

2.1 Particle Systems

The simulation of a particle system involves processing every particle’s movement in discrete
timesteps. In a graphics environment each timestep is referred to as a frame, in which the scene
is recalculated and rendered. The processing of each particle generally involves integrating
the equations of motion. This includes integration of velocity and acceleration from initial or
applied forces. Performing this integration based on time in discrete steps requires the use of
numerical integration. Methods for this are described later in Section 2.17

There are many different types of particle systems. We categorize them into three types
based on interactions as shown in Figure 4. The types of interactions in a particle system have
direct implications for the computational complexity of the algorithm.

—
e /v\" @ O

Figure 4: Different types of interaction.

2.1.1 NIPS

Non-interacting particle systems (NIPS) have no interaction between particles, that is, particles
are independent of each other. These particle systems have a computational complexity of O(n)
per step (Algorithm 1). These are the least computationally complex particle systems.

fori=0to N —1do
move particle 7
end for

Algorithm 1: NIPS

2.1.2 SRIPS

Short range interacting particle systems (SRIPS) have particles that interact with their neigh-
bours, that is, other particles within a short range. One form of these interactions, and the

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

one we have used, is collisions, where the particles are hard spheres which bounce off each
other. The brute force method for the computation of this type of particle system is given in
Algorithm 2.

fori=0to N —2do
move particle ¢
forj=i4+1to N—1do
check collision between particle ¢ and j
end for
end for

Algorithm 2: SRIPS brute force

Spatial data structures (discussed later in Section 2.16) can be used in this case to quickly
determine close or neighbouring particles, reducing the computational complexity from the
brute force O(n?) method to O(n), shown in Algorithm 3. The inner loop of the Algorithm 3
should, depending on the type of spatial data structure and distribution of particles, take a
constant time, and hence reduce the complexity to O(n), discussed in Section 2.16.

fori=0to N —1do
move particle 7
for all j in neighbour(particle[i]) do
check collision between particle ¢ and j
end for
end for

Algorithm 3: SRIPS using a spatial data structure

2.1.3 LRIPS

Long range interacting particle systems (LRIPS) are where every particle is affected by every
other particle as occurs with a gravitational or electrostatic force. These systems then have
computational complexity of O(n?), or more specifically (n?), and require the brute force
approach as given in Algorithm 4.

fori=0to N —1do
for j =0to N — 1 where j # i do
compute interaction between j and ¢
end for
move particle ¢
end for

Algorithm 4: LRIPS

2.2 Rendering

Applications, such as games, may require the particle system to be rendered graphically as
well as computed. The rendering may happen after the calculation step in each frame or after
multiple frames. The rendering approach can range between simple unshaded opaque points
to transparent billboards that require depth sorting or surfaces that need geometry generated

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

from the particle cloud. This extra rendering load added to the particle system computation is
also an important factor as it will affect the performance of applications involving display.

2.3 Computer Architecture

Investigating and optimizing performance generally requires understanding computer and graph-
ics architecture. To make processes and algorithms efficient they should be shaped to fit the
architecture. The process of computing and rendering particle systems may include data trans-
fer from hard disk to system memory to video memory and vice-versa. Some parts of the process
may be computed on the CPU and others on the GPU. It is important to know how each of
these components relate to each other and how they are interconnected.

e .

Unit

=)

PCle2 x16 :
8GB/s |

System Memory

| |
Graphics Card 1 | DDR400 3200 MB/s
! ! DDR2-1066 8533 MB/s
! Al Control _ DDR3-1600 12800 MB/s
$ | | Registers
| |
|
1

/ RAM

Graphics
Memory

USB 1 Chipset
P : Memory Bus
500MB/s each i 1 (usually same speed as FSB)
PCleslots Koo 3 Northbridge F
(Memory Controller) |
: ~ Local Storage/HDD
| S-ATA
|

7 EE
1 187.5 MB/s
2 375 MB/s

Flash ROM
/ 65 3 750 MB/s

Figure 5: Simplified computer architecture.?

Southbridge

Figure 5 shows the basic architecture of today’s desktop computers. An important aspect
of this architecture is the different bus speeds between components. Previously the northbridge
included the memory controller (shown in green) and also handled data transfer to the graphics
card via the PCle bus. Recently both memory controller and the graphics card bus have been
relocated to the CPU itself (shown in red). These changes are designed to improve performance
and reduce latency between the CPU, system memory and the graphics card. The southbridge,
also known as the I/O (input/output) controller hub, bridges the lower performance components
of a computer and the northbridge. This includes data transfer to hard drives, lower speed PICe

3RAM speeds from: http://www.crucial.com/support/memory_speeds.aspx

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

slots, LAN (local area network) and USB host.

In the example of a particle system that is computed on the CPU which is then rendered,
the data in system memory must constantly be transferred into CPU registers, operated on
and sent back to system memory. The resulting data then needs to be transferred to graphics
card. Currently computers use the PCle (Peripheral Component Interconnect Express) bus to
transfer data to the GPU. While this is a huge improvement from older AGP or PCI buses
this is still a potential bottleneck. Figure 6 shows transfer speeds of PCle versions for differing
numbers of lanes. As shown, doubling the number of lanes in a PCle bus doubles its speed.

PCle Version m 8 lanes (x8) | 16 lanes (x16)

vl.x 250 MB/s 2 GB/s 4 GB/s
v2.0 500 MB/s 4 GB/s 8 GB/s
v3.0 1 GB/s 8 GB/s 16 GB/s

Figure 6: PCle transfer speeds.

2.4 Graphics Pipeline

The graphics pipeline, as shown in Figure 8(a), relates to the process of rendering graphics.
Typically, this takes a 3D scene and generates a 2D image representation. Commonly a scene is
made up of models or geometry made from a mesh of polygons. The polygons’ 3D coordinates
are transformed into screen coordinates and rasterized to pixels. The pixels are then coloured
and the result is then displayed or saved depending on the render target. This process is shown
in Figure 7.

o - o - a
. . - . “
o a o C
Colored Vertices After Interpolation, Texturing,

Primitive Assembly Rasterization

Vertex Transformation and Coloring

Figure 7: Basic rendering process.*

The rendering process starts with some geometry specified as vertices along with connectiv-
ity to form graphics primitives, such as points, lines and polygons. This represents the geometry
in object space. This data is then sent to the graphics card. PCle version 1 transfers data at a
rate of 256 MB /s per lane. Most graphics cards use 16 lane PCle giving a total of 4GB/s. PCle
version 2 which is now becoming common is double that at 8GB/s.

The next step is to transform the geometry into eye space so it is relative to the viewer or
virtual camera. This transformation includes world space and camera space transformations
that move the object to its position in the scene and then that position relative to the camera.
This transformation is referred to as the modelview transform.

At this point vertices may be coloured, usually by performing lighting calculations. Two
common methods for applying lighting calculations are Phong [Pho75] and Blinn-Phong [Bli77]

“From: http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

lighting.

The projection transformation is then applied. This applies a projection such as perspective
to the model, resulting in the object being transformed into screen space. Clipping is performed
to remove primitives outside the 2D image area.

The object in screen space is essentially 2D vector based graphics. This geometry must be
rasterized to determine the correct pixels for each primitive. At this point each pixel is given a
colour based on interpolated data from the vertex colours. Pixels may be further colored using
a texture.

Finally, raster operations may be applied, for example depth testing so objects are not drawn
over the top of each other, that is to say the hidden surface problem is solved, and blending to
draw transparent objects.

3D API 3D API

i GPU Commands & Data

Vertex Indices

GPU Front End *

-

Pixel Locations

¢

LT s

Interpolated

Primitive Assembly

Raster Operations Rasterization

vertex Data

Frame Buffer

(a) Fixed pipeline

i GPU Commands & Data

Vertex Indices

GPUFrontEnd = >
Programmable J

Raw Vertex Processor
Vertices

Primitive Assembly

Pixel Locations

Programmable !‘ i

Pixel Processor
Interpolated

Raster Operations Rasterization

@L

Frame Buffer

vertex Data

(b) Programmable pipeline

Figure 8: Graphics rendering

2.5 CPU Evolution

Ever since the first CPU, hardware has increased in power at an exponential rate, as predicted
by Moore’s law [Moo65]. The CPU, designed for general purpose processing, has previously
evolved as a faster single core processor, largely through increasing clock rates. More recently
in order to keep increasing performance, CPUs have shifted from faster single cores towards
increasingly multicore processors. Current generation CPUs have 4 cores but 6 and 8 core
CPUs are expected to be widely available within a year or so.

Some games have taken advantage of multicore CPUs, implementing multithreaded engine

components. For example the Source engine includes a multithreaded particle systems °.

®Reference: http://source.valvesoftware.com/SourceBrochure.pdf

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

2.6 GPU Evolution

Graphics acceleration hardware technology has been around for 30 years but the first GPU,
as we know them now, is generally regarded to be the Nvidia Geforce 256, released in 1999.
This was the first GPU to perform hardware transform and lighting calculations which were
previously performed on the CPU. Moreover it was the first single chip GPU to accelerate the
entire (fixed) graphics pipeline, shown in Figure 8(a), in hardware.

In 2001 Nvidia released its Geforce 3 GPUs. These GPUs were the first to include pro-
grammable vertex and pixel shaders units (Figure 8(b)). Similar to the previous fixed function
GPUs (Figure 8(a)) these GPUs have separate vertex and pixel units, except they are now
programmable. The shader programs that ran on the Geforce 3 series GPUs were written in
assembly language. This made writing shaders a complex task without access to high level
programming tools (further discussed in Section 2.8).

The unified shader architecture combines vertex and pixel shader units into one processor.
The advantage of this is a scene with imbalanced vertex to pixel operations will not suffer a
performance loss. ATI were the first to produce a GPU with this capability with the Xenos
GPU used in Microsoft’s Xbox 360. Soon to follow was Nvidia’s G80 series GPUs (released
in 2006) which were the first GPUs with unified shaders for the PC. They were also the first
with unified shaders to fully support DirectX 10. The G80 series were also the first GPUs with
CUDA support. The G90 series GPUs were released in 2008 and are very similar to G80 GPUs.
Nvidia’s GT200 GPUs (released in 2008) are currently the latest generation and include more
advanced CUDA functionality.

Intel’s recent high end quad core CPU, the i7, has an estimated 731 million transistors,
which may be compared with Nvidia’s GT200 GPU which has 1.4 billion transistors and 240
“cores”. Nvidia have just announced their latest GPU: the GT300 or “Fermi” with 3 billion
transistors which is expected to be available in late 2009 or early 2010. GPUs are increasing in
their number of transistors and similarly computational power at greater than the exponential
rate Moore’s law according to Matt Pharr [PF05].

Intel, which has not been in the discrete GPU market, has announced its intention to enter
with a new chip called Larrabee, marketed as a GPU with 1.7 billion transistors. Its design is
targeted both toward GPGPU and graphics rendering, however much hardware based, graphics
specific functionality has been removed in preference the idea of software based rendering on a
fully programmable GPU.

2.7 Stream Processing

The rendering process involves many repetitive transformations and colour operations on ver-
tices and pixels. Due to the independent nature of these operations it is possible to divide
and stream these operations amongst many processors. Stream processing is a limited form of
parallel processing where separate processors do not need to communicate or synchronize. To
exploit this attribute GPUs are built with many processors (now well into the hundreds range).

2.8 Shaders

The introduction of programmable shaders was a major step in GPU evolution. Shaders are
small C-like programs that can be run on the shader units in a GPU. Since this develop-
ment, many graphics techniques stopped depending on specific fixed functionality and use of
obscure hacks to work, and more generally, has made possible a whole range of new rendering
approaches.

10

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

In 2002 the OpenGL Architecture Review Board (ARB) created OpenGL shading language
(GLSL) as a high level shading language to give access to the programmable graphics pipeline
without the use of low level assembly language. GLSL was added as an extension to OpenGL
1.4. Later in 2004 GLSL was formally included as part of OpenGL 2.0. Microsoft developed its
high level shading language (HLSL) for DirectX and also worked closely with Nvidia to develop
the Cg shading language at around the same time.

The unified shader model uses a consistent instruction set across all shader types. This
means much of the same capabilities that exists in vertex shaders also exists in fragment shaders.
This gives a much more flexible framework to develop in but also improves GPU performance.

The general use of shaders for GPGPU uses pixel or fragment shaders. The output data
must be encoded in pixels of a texture. Data can be computed by rendering to this texture
using shaders. For example input data is available as a texture. Then a full screen polygon is
rendered to an output texture. Given the position of the output pixel and some data from the
input texture each fragment process can do some computation and write the result into colour
channels of the pixel. There are limitations to using shaders for general purpose computing.
All data involved must be encoded in textures. There is extra overhead for texture look-ups
compared to reading a variable and the bandwidth in transferring texture data between system
and graphics memory is costly.

While each GPU core may not be as powerful as a CPU given their number in today’s
GPUs, they can outperform the CPU for some applications. Applications that do this are ones
that scale well to the streaming nature of the GPU. They are the ones which require little effort
to divide into smaller tasks that can be spread evenly amongst processors running in parallel.
Such tasks are named embarrassingly parallel. Particle systems in general have the potential
to do this.

2.9 GPU Computing

ATT has recently released ATI Stream (formerly Close To Metal) and Nvidia has released CUDA
(Compute Unified Device Architecture). These interfaces allow general purpose C-like code to
be run on the GPU. This enables a much more flexible form of GPGPU programming and
is why it is being termed GPU computing in order to differentiate from GPGPU, and is the
next step in the evolution of programmable GPUs. Standard data types can be used instead
of textures. For example an array of floating point values can be copied to video memory and
operated on directly. This means there is no overhead for texture look-ups. There is shared
memory between GPU cores. Unlike shaders, threads can communicate with each other. There
are also atomic operations that allow writes to the same block of memory.

To clarify, the term GPGPU now relates more to shader based GPU computation where as
the new term, GPU computing, refers to the use of non shader development environments such

as CUDA.

2.10 CUDA

GPUs supporting CUDA have a compute capability which defines the minimum level of CUDA
functionality they support. The first few Nvidia G80 GPUs support compute capability 1.0.
1.1 compute capability gives access to atomic operations. 1.3 adds support for double precision
floating point numbers.

CUDA is designed with the intent of perfect parallel scalability. The following example is
based on the template project from the CUDA SDK. A CUDA kernel is the program that is

11

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

executed on GPU cores. It is similar in code to a C function:

__global__ void

testKernel (float* idata, float* odata)

{
//identify this instance using blockIdx and threadIdx
//operate on idata and write to odata

}

cudaMalloc((void#**)&inputData, mem_size) ;
cudaMalloc ((void#**)&outputData, mem_size);
cudaMemcpy (inputData, hostData, mem_size, cudaMemcpyHostToDevice);

testKernel<<< grid, threads, mem_size >>>(inputData, outputData);

The __global__ keyword tells the CUDA compiler that that function is a kernel. Before
executing this kernel graphics memory must be allocated and populated. The data in hostData
is the input data for computation in system memory. This is copied to inputData which is in
graphics memory. The kernel is then called using pointers to graphics memory data.

Global Block Scheduler

TPC
SM Controller

SM

1
1
|
1
|
|
|
|

Instruction Unit :
|
|
|
|
|
|
1
|
1
|

I [SJSR Uiy [(U ————— I
2 4 2 4 V-

Graphics Memory

Figure 9: Nvidia GPU architecture for CUDA

When a kernel is executed it is distributed across thread processing clusters (TPCs) by
the global scheduler. Each TPC has a number of streaming multiprocessors (SMs) and an SM
controller. SMs each contain an instruction unit and number of stream processors (SPs), pre-
viously referred to as GPU cores. This hierarchy is shown in Figure 9. An SM creates threads,
or “warps”, and schedules them across SPs. Each SP is equivalent to a CPU’s arithmetic logic
unit (ALU) and is where the actual computation is performed. There is no overhead for thread
scheduling and a GPU with more SMs can execute the same kernel in less time automatically.

The Nvidia G80 and G90 GPUs have two SMs for each TPC, where as the GT200 GPUs
have three SMs per TPC. Two graphics cards we have used in our investigation are the Geforce
9600GT (with a G90 series GPU) and the GTX275 (with a GT200 series GPU). The G90 GPU

12

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

on the 9600GT graphics card has 8 SMs (4 TPCs) and 8 SPs per SM giving 64 SPs in total or
64 GPU cores. The GT200 GPU on the GTX275 graphics card has 30 SMs (10TPCs) and 240
SPs.

2.11 GPU Based Physics

In 2006 Ageia released its PPU (physics processing unit) — the so called PhysX chip. Ageia’s
physics engine PhysX would offload computation to the PPU just as rendering had been of-
floaded to the GPU. This was then retargeted to the GPU using CUDA when Nvidia bought
Ageia.

An edition of the Havok game physics engine, Havok FX was created that offloaded effect
physics (physics that do not affect game-play) to the GPU using shaders. Havok was bought
by Intel and the Havok FX edition may have been canceled. Bullet, created by Erwin Coumans
who previously worked on the Havok engine is an open source physics engine that also utilizes
CUDA. AMD has recently formed a partnership with Intel owned Havok to incorporate the use
of AMD’s ATT GPUs for physics processing.

2.12 OpenCL

OpenCL is a framework that abstracts specific processor architecture. This allows code to be
run independently of the device. For example a disadvantage of CUDA is it requires a CUDA
enabled Nvidia graphics card. CUDA code will not run on ATI cards. However OpenCL,
given driver support, would allow the same set of instructions to be run on an Nvidia or ATI
GPU, or on the CPU. OpenCL may also allow for a high level load balancing between different
Processors.

Apple originally worked on OpenCL and then later the Khronos Group released the official
OpenCL 1.0 specification in 2008. Both Nvidia and ATI have recently released the first drivers
to support OpenCL operation on their GPUs.

2.13 Single vs Double Precision

IEEE (Institute of Electrical and Electronics Engineers) standardized floating point formats in
the IEEE 754 specification [Ste81]. Two of these floating point standards are the most widely
used in computer hardware languages:

e Single precision or “float” in the C language (4 byte floating point value). This stores
approximately 7 decimal places.

e Double precision or “double” in the C language (8 byte floating point value) This stores
approximately 15 decimal places.

CPUs generally perform single and double precision calculations in similar time. A limiting
factor is the data transfer as double precision data is larger, which can make double precision
computation slower.

Most recent GPUs these days are optimized for single precision operation and there has
been a lack of support and performance for double precision. Only more recent GPUs, for
example Nvidia’s GTX260 and later support double precision. Although these GPUs are able
to perform double precision operations their speed is far less than that of single precision. The
next generation of GPU from Nvidia is intended to support faster double precision. Figure 10
shows preliminary results from the GT300 (Fermi) whitepaper. A 400% speed increase in double

13

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

precision computation speed can be seen when comparing Fermi with the GT200 series. This
makes GPUs much more useful for GPGPU scientific applications which require high floating
point accuracy.

Double Precision Application Performance

450%

400% -
350%
300% GT200

Architecture
250% +— p——————— —

Fermi
200% Architecture

150% {————— ——— —
100% +—— e —
50%

0%

Double Precision Matrix Double Precision Tri-Diagonal
Multiply Solver

Figure 10: Nvidia performance evaluations for the GT200 and GT300 (Fermi)

2.14 Performance

In computer science, performance of data structures and algorithms are commonly analysed
in terms of their computational complexity. However in computer graphics it is common to
analyse performance using a performance benchmark approach where computational complex-
ity analysis is not possible. We use both approaches in this thesis although the focus is on
performance benchmarking and computational experiments.

2.15 Parallel Programming

For some problems it is possible to divide a task amongst multiple processors so that the
processing time is divided by that number of processors. Some applications are better suited
to this than others. For example a step in an algorithm may be dependent on a previous step,
forcing processors to wait on others. This part of the algorithm is serial and a synchronization
between processors must be made. In the case of parallelisation, Amdahl’s law [Amd67] states
that the total speedup from parallelising an algorithm is

1
(1-P)+ &
Where P is the proportion of the program that can be made parallel, (1 — P) is then the

serial portion, and N is the number of processors. The result of this law is that no matter
how many processors are used to compute an algorithm, it will never be faster than the serial

(1)

portion.

The portion of a program that can be parallelised has a big impact on the speedup that can
be obtained as shown in Figure 11 (red is the portion of a program that must be serial). In the
case where a large portion of a program cannot be parallelised the overhead from paralellising
the implementation may even reduce overall performance.

14

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

Figure 11: Parallel speedup.

2.16 Spatial Data Structures

One difficulty with short range interacting particles is the need to determine only nearby parti-
cles without checking distances to all particles. A spatial data structure (SDS) groups objects
into containers (leaf nodes/buckets) based on position. To find a particle’s neighbours the al-
gorithm only needs to search containers that the particle intersects. Every time particles move
the SDS needs to be updated and hence must be done every frame.

Two common SDSs are the uniform grid and the k-D tree (k-dimensional tree). The uniform
grid divides space evenly along each dimension. More advanced implementations can dynami-
cally change divisions in each dimension to compensate for uneven distribution. The uniform
grid performs better when objects are evenly distributed.

The k-D tree is a binary tree that divides space where needed. If a leaf of the tree has too
many objects a split is made at the center of the objects in the leaf, creating two leaves. At
every branch the axis of the split rotates (the first split is in the X axis, second in Y etc.).
Because the structure divides space in the center of the objects it does not matter whether the
objects are evenly distributed or not.

Figure 12 shows the uniform grid and the k-D tree and their storage method. It is better to
use a uniform grid when objects are evenly distributed as it is easier to implement and faster.
If objects are not evenly distributed it may be necessary to use a different SDS such as the
k-D tree which adapts to the distribution. Figure 13 shows implementations of these SDSs:
Figure 13(a) shows a uniform grid dividing evenly distributed particles while Figure 13(b) has
unevenly distributed particles and shows the use of a k-D tree with a higher concentration of
subdivisions closer to the cluster of particles in the cube corner.

In this work we use the uniform grid as the particles in the SRIPS implementations are
evenly distributed. Due to time constraints we were unable to investigate situations requiring
the use of a k-D tree.

2.17 Numerical Integration

Particle systems involving position, velocity and acceleration require numerical integration of
the equations of motion in order to animate smoothly and accurately. The most basic numerical
integration technique is the Euler forward method, commonly referred to as the Euler method

Vn—l—l = Vn+hAn
Pn+1 = Pn+hVn

where P is position, V is velocity, A is acceleration and h is the time between steps n and n+ 1.
This adds time multiplied by the current gradient at step n for both position and velocity. The

15

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

o 9 o
®l o, o

bucket| 0 | 1 | 2 | 3
index| 0 | 0 | 1

1 3
© 00 o

Figure 12: Uniform grid and k-D tree storage diagram

(a) Uniform grid

Figure 13: Spatial data structures in use

euler method gives an accurate velocity for constant acceleration or an accurate position for
constant velocity but becomes very inaccurate when one varies or the timestep h becomes large,
as can be seen in Figure 15. The improved Euler method, also known as integrating using the
mid-point, uses the average of the gradient at n and n + 1 instead of just the gradient at n to
approximate the integral and has better accuracy

Vat1 = Viu+hA,
1
Pn+1 = P+ hi(vn + Vn-l—l)

1
= P, + hi(v" + Vo + hAy)

h
= P,+h(V,+ §An)

16

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

The error of the improved Euler method is far less as can be seen in Figure 15. This figure
shows the vertical position of a particle moving over time with initial acceleration Ag = —9.8
and velocity Vp = 10.

Tangentatn

midpoint

T

n n+1

Figure 14: Tangents of a curve. Represents integration at discrete timesteps.

Numerical Integration

Correct value

05 1 15 2\ 2.5 Euler

\ = |mproved Euler

Position

o &b NO NSO

—-
1S)

Time

Figure 15: Numerical integration techniques

In terms of performance the time difference between these techniques is constant. This
means choosing different techniques will only affect a particle system’s computation by a con-
stant factor for a given particle system size. It will affect CPU and GPU implementations in
similar ways, and whilst accuracy is of course important, our primary concern is performance.

2.18 Memory Requirements

A simple particle system storing position and velocity only, using single floating point precision
takes 2(position + velocity) x 3(dimensions) x 4(floating point bytes) = 24 bytes per particle.
A common graphics card today has 512MB of memory. The maximum number of particles that
can fit in graphics memory is then around 22 million.

Many particle systems need to store additional information for example colour, size, tem-
perature, time to live etc. Add to this the need for textures and geometry commonly found in
a game and memory storage limits simulation of GPU based particle systems.

When a program running on the CPU runs out of physical memory the operating system uses
virtual memory. Virtual memory uses the hard drive as extra memory and does so automatically.
Currently graphics cards do not support virtual memory. In a GPGPU application if the data

17

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

cannot fit in video memory it must be stored elsewhere and loaded in on demand by the
application. In effect, if a particle system requiring more video memory than available, the
application must implement some form of virtual memory. If all particles require rendering at
once, their data must be swapped in and out of video memory mid-frame, which can result in
performance “cliffs”.

3 Related Work

A number of papers have discussed performance of GPU based particle systems. Most of these
have used a shader based approach which until recently was the only way to utilize the GPU
for GPGPU applications. Each use different techniques with the aim of larger particle systems
with increased performance.

Figure 16: Other GPU based particle system implementations

UberFlow [KSWO04] is a shader based particle engine that has inter-particle collision, par-
ticle and other geometry collision and also renders using transparency which requires sorting.
This particle system was implemented entirely on the GPU so there was no bandwidth con-
striction between CPU and GPU. Uberflow found when adding collision between close particles,
processing one million particles dropped from approximately 50 to 10 FPS.

Latta [Lat04] achieved one million particles running at close to real time speeds using
shaders. Their particle system implements collision detection with a height field and also sorts
the particles based on depth for alpha blending. Kolb, Latta and Rezk-Salama [KLRS04]
extended this work and used depth maps for particles colliding with arbitrary geometry (Fig-
ure 16(a)). Kolb and Cuntz [KCO05] implement fluid simulation (Figure 16(b)) on top the
[KLRS04] particle system entirely on the GPU using shaders. The simulation achieves thou-
sands of particles at real-time speeds.

Sebastian Sylvan [Syl07] implemented a particle system on Microsoft’s XBox 360. It uti-
lized the GPU and achieved 90 fps with just over two million particles (Figure 16(c)). The
implementation included particle depth sorting.

18

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

Beeckler and Gross [BGO8] implement particle systems on a number of field programmable
gate arrays (FPGA). Using three FPGAs for computation, the particle system reach 112 million
particles per second or 3.7 million particles at 30 fps. Although this is very fast, FPGAs are
not widely available, and instead most computers have GPGPU compatible GPUs.

Nyland, Harris and Prins [NHPO7] created an astrophysical simulation using CUDA (Fig-
ure 16(d)). This particle system groups clusters of particles together for computing gravitational
pull to reduce the otherwise O(n?) computation to O(n). Although this reduces accuracy it
gives a huge performance increase because the mass of a cluster, not each individual particle
can be used for particle movement computation.

Green [Gre07] from Nvidia wrote a particle system using CUDA that included inter-colliding
particles (Figure 16(e)). This implementation uses a uniform grid spatial data structure that
is constructed in parallel also using CUDA. It reached 65,536 particles at 120 fps.

The implementations for the last two mentioned particle systems are available. These have
been run on our test platform and we compare results with our particle systems in Section 5.9.

3.1 Discussion

There has been a selection of work done in relation to GPU base particle systems. Many imple-
mentations utilize shaders, however as discussed earlier in Section 2.8 there is a lot of graphics
specific overhead that is unnecessary when shaders are used for GPGPU. Two papers discussed
particle systems implemented using CUDA, a new form of GPGPU or more specifically, GPU
computing (as discussed in Section 2.9). While their end goals are similar to ours, these papers
do not focus on examining and comparing performance.

This research follows on from previous work to produce in-depth analysis of the performance
behavior and of different particle system types.

4 Implementation

In order to investigate our research questions some particle system implementations had to be
constructed to measure performance. As discussed in Section 2.1 we categorize particle systems
into three types: NIPS, SRIPS and LRIPS. For each particle system type we create a test case
to compare performance gains, or losses, between CPU and GPU processing. Each case consists
of a box filled with particles that bounce off the box sides. For each case we implemented a
single and multi core CPU based particle system and a GPU based particle system. A further
case introduces rendering geometry in addition to particle system computation. The different
particle systems systems, as shown in Figure 17 are:

e Non interacting particles (NIPS). In this case a cube is filled with particles with ran-
domized position and velocity. Particles bounce off the sides of the cube but have no
inter-particle interaction (Figure 17(a)).

e Short range interacting particles (SRIPS). As in the first case a cube is filled with random-
ized particles that bounce off the cube sides. However particles are modeled as spheres
and collide and bounce off each other as well (Figure 17(b)).

A spatial data structure is required to limit collision detection to neighbouring particles.
Since the particles in the cube stay evenly distributed a uniform grid spatial data structure
is the best choice. The uniform grid implemented is constructed using radix sorting as
described in Green’s article [Gre07], and discussed in Section 3.

19

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

The use of the spatial data structure increases particle system performance but adds the
construction time of the data structure to the frame time. Our CPU implementation of
the uniform grid is not a parallel implementation and hence SRIPS has a serial component
for the CPU tests. The timing specifically for uniform grid construction is analysed in
the results.

e Long range interacting particles (LRIPS). This is implemented in the form of gravity
(Figure 17(c)). A spatial data structure is of no benefit here as interaction is required to
include all other particles. Hence computational complexity has a lower bound of (n?).

e Lastly a rendering load is created by rendering a terrain at the same time as performing
particle system calculations (Figure 17(d)). This is an extension of the SRIPS implemen-
tation. Particles collide with both each other and may also collide with the terrain.

The timing results from one frame to the next may differ significantly as a result of caching
and many other variables. The frame time generally settles after a short time so tests are run
for 10 seconds each and timing results are then recorded. As discussed in Section 2.14 we take
the average frame time. Results still varied slightly using this method. We found taking the
median of the average frame time every 100 milliseconds to give much more consistent results
with less jitter.

4.1 Test Environment

The specifications for the test platform are as follows:

e Intel Q9300, 2.5GHz quad core CPU (released March 2008)

GPU1: Nvidia Geforce 9600GT (64 SPs, CUDA 1.1 capable, released February 2008)

GPU2: Nvidia Geforce GTX275 (240 SPs, CUDA 1.3 capable, released April 2009)

HP wx4600 Motherboard (Intel X38 Express chipset)
e MS Windows XP
e Implementations use CUDA 2.3, and OpenGL 3.1

For our tests we have endeavored to use hardware of a similar period. The CPU and GPUs
we have used have been released within around a year of each other. There are now newer
CPUs, the Intel i7s, which are of the same generation of the GT300 GPUs (Fermi), announced
and to be released by year end.

5 Results

We measure the time per frame taken to compute particle systems. These results are given in
milliseconds (ms). Commonly in games and graphics timing results would be given in terms of
framerate measured in frames per second. Time per frame, the inverse of framerate, is more
appropriate here. To relate these different scales, 30—60 frames per second is approximately
33.3-16.7 milliseconds per frame. All tests, unless stated otherwise, use the Nvidia GTX275
graphics card (which has a GT200 GPU) for particle system computation. Also computation
is performed using single precision floating point numbers unless stated otherwise.

20

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

(a) NIPS (b) SRIPS

(c) LRIPS (d) SRIPS With Geometry

Figure 17: Different types of particle systems®

5.1 NIPS

Figure 18(a) shows the total time per frame versus particle system size up to 1 million particles.
Some tests exclude rendering time for particles denoted as “no render”. “x1-4” indicate the
number of cores used in the CPU tests. “Copy back” indicates the data is being copied from
graphics memory to system memory at the end of each calculation step. The tests which involve
rendering using point sprites which is the simplest form of rendering required, consisting of just
a 3D coordinate per particle.

From the results in Figure 18(a) it is clear that the relationship for all CPU and GPU tests
are broadly linear. That is, the time taken to process the particle system increases at a constant
rate with increasing numbers of particles. This confirms the computational complexity is O(n).
This also shows that NIPS scale well on the highly multicore architecture of the GPU.

The GPU based NIPS processing time is 4.5 times faster than that of a single CPU core
and 2.2 times faster than that of all four cores. These GPU based particle systems are faster

5Blurred to show motion

21

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

” Non interacting particles

CPUXx1

20 —— | =¢=CPUx2

——CPU x4

[
«

CPU x1, no render

=d=CPU x2, no render

i
o

——CPU x4, no render

=—GPU

Time per frame (ms)

GPU, no render

0 200,000 400,000 600,000 800,000 1,000,000

Number of particles

(a)

Non interacting particles

/ CPUX1
2.5

CPU x1, no render

—GPU

/ GPU, no render
14 ——
/ GPU, copy back
0.5 === GPU, no render, copy back
!
0

0 50,000 100,000 150,000 200,000

Time per frame (ms)

Number of particles

(b)

Figure 18: Non interacting particle system results.

by a factor of between 2—4.

Moving from the using 1 to 2 CPU cores decreases the processing time of 1 million particles
to 51% without rendering, almost exactly a 2x speedup which is the best case possible. Using 4
cores decreases processing time to 73% that of dual core, or 37% that of single core (compared
to the optimal 25%). These results suggest that NIPS do not continue scale well with increased
CPU processors.

Another interesting finding is that when the particle data is required to be in system memory
after calculation, the added time taken to copy back the data from the GPU increased the total
frame to nearly double (196%) that of the original time. This shows that the transfer of a NIPS
particle system position data takes almost as long as its computation and rendering. This
performance loss brings the GPU based NIPS time close to that of the quad core based NIPS.

CPU based particle systems using 2 out of 4 cores and rendering has consistently given
results where the time per frame jumps between values. Interestingly, the same pattern is not
observed without rendering. This is seen again in Section 5.5, Figure 26. To speculate this
could be a result of the scheduler only running two threads on a quad core CPU. It may also
be a specific implementation detail. Further research should be done to find the cause.

22

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

Figure 18(b) displays a zoomed in section of Figure 18(a), showing in detail the results
for up to 200,000 particles. It can be seen that for these small particles the CPU takes less
time to compute non interacting particles than the GPU until the crossover occuring ar around
50, 000-100, 000 particles. CPU computation involves the overhead of transferring particle data
to the graphics card to be rendered. However there is little difference in overall CPU time with
and without rendering for small NIPS. This is not the case for GPU based NIPS. This would
suggest there is overhead when rendering is applied as well as GPU based computation. It is
possible there is a context switch between GPU processing modes causing this slowdown.

5.2 LRIPS

Long range interacting particles - single vs double

precision
4,500

N

4,000 —oy 4—CPUx1
—f—CPU x2
3500 1 4 cpuxa 7
3,000 CPU x1, double

«3jé=CPU x2, double

2,500

—8—CPU x4, double &
et GPU
e GPU, double

2,000

Time per frame (ms)

1,500

1,000

500

0 1,000 2,000 3,000 4,000 5000 6,000 7,000 8000 9,000 10,000

Number of particles

Figure 19: Long range interacting particle system results.

Figure 19 shows frame time for computing long range interacting particles. The results show
GPU times to be far less than CPU times. The GPU is over 200 times faster than using one
core, 158 times faster than two cores and 79 times faster than 4 cores. This clearly shows that
GPUs compute LRIPS enormously faster than CPUs. Figure 19 also shows results for when
double precision is used for particle computation, and is discussed in Section 5.5.

We expect LRIPS to have a quadratic shape given their computational complexity. To test
this we take measurements at Ty and Toy where T is the time per frame for N particles. If
Ton = 4T for large values of N we conclude that the graph is quadratic. The results show all
CPU tests are quadratic. However GPU results show 17 go0 = 1.98T500 and 170,000 = 2.6775 000
(without rendering). The first GPU result suggests a linear relationship while the second is not
linear. However neither are close to quadratic. At this point we do not have a model which
explains these results for GPUs.

Dual core CPU again reduces the time to half that of single. Quad core reduces time to
half that of dual, or one quater of the single core. These results show LRIPS scale very well on
multicore CPUs.

Figure 20 shows detailed LRIPS results for small systems with a high number of measure-
ment points. Figure 20(a) displays GPU results only. It can be seen that the GPU computes
small LRIPS with a linear relationship to the number of particles. Figure 20(b) adds CPU
results. Figure 20(c) takes the derivative of the CPU results in Figure 20(b). While there is

23

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

Long range interacting particles Long range interacting particles
45
1
0.9 40
0.8 —GPU // _ 35 | ——| —cpru //
£ o7 / E 30 | —oapu
g 06 —~ g /
"g 03 / 3 2
:.’ 0.4 — :”;
£ 03 EV
F -~ 10
0.1 // s
0 0
0 200 400 600 800 1,000 0 200 400 600 800 1,000
Number of particles Number of particles
(a) GPU only (b) GPU and CPU
_ Gradient of LRIPS
£ o009
2 008 A
£ /_/\/
£ 007 T —cy
5 0.06 | el
o 005 J/JVAV_/‘/
£ oo0a
'25,“ 0.03
® 002
£ oot P
S 0
§ 0 200 400 600 800 1000

Number of particles

(¢) CPU Gradient

Figure 20: Small long range interacting particle system results.

a small amount of variance in the derivatives it can be seen that gradient increases roughly
linearly and hence the graph is quadratic, as expected.

Short range interacting particles
2,500
cPUx1
2,000 —m—CPUX2
——CPUx4
CPU x1, double
- ~fi—CPU x2, double
£ 1500
g ~—@— CPU x4, double
£ —GPU
E —&—GPU, double
£ 1o
£
500
~————t————9

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

Number of particles

Figure 21: Short range interacting particle system results.

Figure 21 shows short range interacting particles. Similar to results for LRIPS the GPU is

24

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

much faster than all CPU results. The GPU is 74 times faster than using one CPU core, 46
times faster than two cores and 33 times faster than all four cores. The double precision results
are discussed in Section 5.5.

Moving from 1 to 2 CPU cores reduces time to 62%, using all 4 CPU cores reduces time
further to 72% that of 2 CPU cores which is 45% of the single core time. As stated in Section 4
the multicore versions of short range interacting particles do not parallelise the construction of
the uniform grid. Following this Amdahl’s law shows we cannot decrease particle system time
beyond that of the time taken to construct the uniform grid. If the uniform grid construction
time is factored out so we are measuring the time taken just to process the particles, the single
to dual core results in 55% time and dual to quad a further 62% which is 34% that of the
single core time. Even assuming zero overhead for uniform grid construction the results suggest
multiple core CPUs do not scale well for SRIPS computation.

The relationship between number of particles and time per frame becomes broadly linear
after the 200,000 particles mark. As discussed in sections 2.1 and 2.16 the uniform grid spatial
data structure reduces the comparisons between particles to a constant number assuming evenly
distributed particles. This uniform grid implementation divides the cube up evenly so on average
there are only 12 nearby particles to check.

The particle radius affects the speed of the system significantly as the bounce calculations
are relatively expensive. To get consistent results the particle radius R was based on the system

size N
1 D

R=- — 2
2 VYN @
where D is the edge length of the bounding cube. This gives a reasonably frequent number of

collisions but not so much that they become a dominating factor.

Short range interacting particles
0.7

0.6
——cpPu //\
0.5

= GPU \

0.4 L~

0.3

Time per frame (ms)

0.2

/EAV]

0 100 200 300 400 500 600 700 800 900 1,000

0

Number of particles
Figure 22: Small scale short range interacting particle system results.

Figure 22 shows a zoomed in section of our SRIPS results for small systems using single
core CPU and GPU implementations. The time for SRIPS computation drops suddenly after
every few hundred particles. This corresponds with changes in the uniform grid bucket count.
The formula we used to calculate the grid size is as follows

[N

B=MN1

| (3)

25

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

where B is the number of buckets in each dimension of our grid, N is the number of particles
and [] is the ceiling function.

5.4 Particle Systems and Graphics

Terrain and SRIPS

2,500

——CPUXL /
2,000
CPU, no collision
—&—GPU
1,500 -
GPU, no collision /
1,000 /

500 /

a”
-

Time per frame (ms)

S S e e . T G
0 200,000 400,000 600,000 800,000 1,000,000

Number of particles

Figure 23: SRIPS with added rendering.

The addition of a rendering load changes the type of relationship between SRIPS processing
time and particle count. Figure 23 displays SRIPS with and without collision between particles
and the terrain. The results show SRIPS are computed faster on the GPU by a factor of 61
when particles collide with the terrain and 64 when they do not. Removing the collision between
terrain and particles increases the speed of the GPU implementation by 1.05 and the speed of
the CPU implementation by 1.13.

Terrain and SRIPS - increasing polygons
25

CPU, N=100
20 P4
~—m—CPU, N=1000
H /. —&—CPU, N=10000
[——CPU, N=10000, no collision
s
& ——GPU, N=100
]
o 10 ——GPU, N=1000
B —=GPU, N=10000
A
5
N = Number of
particles
o
0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000

Number of polygons in terrain

Figure 24: SRIPS with increasing geometry.

Figure 24 shows a number of tests where the particle system size remains constant and the
tessellation of the terrain changes, increasing the number of polygons rendered. All GPU based
particle systems run at similar speeds with differing rendering loads. The CPU is consistently
faster for small particle systems of around 100-1, 000 particles. For larger particle systems the
CPU starts off being slower but as more geometry is added the CPU becomes faster than the
GPU.

At the point where rendering takes the same amount of time as the CPU based particle
system there is a sudden change in gradient for CPU based particle systems. At this point the

26

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

bottleneck transfers from being the CPU based particle system to the graphics rendering load.

In the case of GPU based particle systems the GPU is also used to render geometry. Off-
loading the processing to the CPU subtracts the GPU processing time of the particle system
assuming the CPU can compute the particle system faster than the GPU can render the ge-
ometry. If the CPU can not compute the particle system at a faster rate then it becomes the
bottleneck and we see a nearly straight line which represents the constant CPU computation
for the particle system. When collision between particles and terrain is disabled the variance
in this line is removed.

Uniform Grid Construction

The uniform grid is necessary to reduce the computational complexity for SRIPS from O(n?)
to O(n). It can be seen that the time for constructing a uniform grid does not compare with
the speedup from its use, that is, it is well worth spending this extra time. This is shown by the
results in Figures 19 and 21, where Figure 19 shows the O(n?) results for LRIPS and Figure 21
the O(n) results for SRIPS using a uniform grid.

Figure 25 shows the uniform grid construction time for a single core CPU based SRIPS in
relation to the total particle system time. Figure 25(b) shows the ratio of this construction
time. For small SRIPS, below 200,000 the uniform grid construction takes the majority of the
total time. While the use of the spatial data structure greatly reduces processing time compared
to the brute force method, the time could be further increased by optimizing and parallelising
the spatial data structure construction. For larger SRIPS the uniform grid construction time
drops to below 10%.

CPU uniform grid construction CPU uniform grid construction ratio
2,500 1
0.9
2,000 0.8
£ / o \
@ 1,500 0.6
g 1
£ 0.5 \
] —— Uniform Grid
:’.}_ 1,000 niform Gri 0.4 Ratio
;g Total time 03
500 0.2
0.1
0 0
0 200,000 400,000 600,000 800,000 1,000,000 0 200,000 400,000 600,000 800,000 1,000,000
Number of particles Number of particles

(a) (b)
Figure 25: Uniform grid construction.

For GPU based SRIPS, using the Nvidia CUDA profiler we found the uniform grid con-
struction time to be 29% of the total GPU computation time (not including rendering time).
While this is significant it is clearly not a bottleneck.

5.5 Single and Double Precision

Figure 26 shows NIPS computation with single and double floating point precision. Double
precision results for LRIPS and SRIPS are given in Sections 5.2 and 5.3, Figures 19 and 21. In all
cases for CPU computation there no more than a factor of 2 difference between single and double
precision computation. The largest difference is the quad core computation of NIPS where

27

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

Non interacting particles - single vs double precision
30

CPU x1
25 ~—CPU x2

—&—CPU x4

CPU x1, double
== CPU x2, double
=8 CPU x4, double
15 =t GPU

20

= GPU, double

10

Time per frame (ms)

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

Number of particles

Figure 26: Single and Double precision for NIPS.

double precision takes 1.72 times longer than single precision. Interestingly double precision
results are faster for CPU based LRIPS computation, although without further analysis we
cannot speculate as to why.

GPU based double precision is quite different. GPU based double precision computation
for SRIPS takes 2.3 times longer, NIPS takes 4.3 times longer and LRIPS takes 24.4 times
longer than single precision computation. In general this shows that current generation GPUs
are quite slow at performing double precision computation.

5.6 Comparing GPUs

The graphs in Figures 27(a) and 27(b) show particle system time for NIPS and LRIPS re-
spectively, computed with different GPUs and graphics cards. Both graphs showing the newer
GTX275 taking much less time to compute the particle systems. The GTX275 has exactly 2.2
times the memory bandwidth and 3.75 times the number of cores that the 9600GT has. There
is also a difference in CUDA compute capability. For smaller particles the GT9600 performs
better than the GTX275 but the GTX275 increases to 2.44 times the speed of the GT9600 at 1
million particles as shown in Figure 27(c). Given both performance of the 9600GT and GTX275
are linear relative to the number of particles the performance increase can be calculated as the
ratio of the gradients of each graph. Using this method the GTX275 computes NIPS 2.92 times
faster than the 9600GT. The time per frame for LRIPS computation of 1 million particles give
an increase in speed of 9.26 for the GTX275. Thus the GTX275 performance is near 3 times
better than the 9600GT as expected by the increase in number of cores.

5.7 Programming Complexity

CUDA offers automatic thread creation and scheduling and also automatic scalability. This
has a big advantage over multithreaded CPU applications as seen in previous results.
However to get those advantages an algorithm or application must be “embarrassingly”
parallel before it will scale well with many-core GPUs. An example is the construction of a
parallel uniform grid construction algorithm. The serial algorithm is fairly simple to implement
compared to the parallel sorting method used in parallel uniform grid construction. Fortunately

28

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

Non interacting particles Long range interacting particles

4500

4000
——9600GT /
3500

—h—GTX275

—4—9600GT

8- GTX275
3000

2500
2000 4////,
1500

1000

o
Time per frame (ms)

Time per frame (ms)

500

0 200,000 400,000 600,000 800,000 1,000,000 0 20,000 40,000 60,000 80,000
Number of particles Number of particles
(a) NIPS (b) LRIPS

NIPS GPU Speed increase

200%

150%

100% //_H_"

50% / —&—NIPS
0% t t t {

200,000 400,000 600,000 800,000 1,000,000

Speed increase

-50%

-100%
Number of particles

(c) NIPS ratio

Figure 27: Comparing Nvidia 9600GT and GTX275 GPUs.

a parallel algorithm existed in this case. There are some algorithms that can not be parallelised.

Development tools are still in the process of being built. One example is the CUDA debug-
ging tool Nexus which Nvidia released this year during the course of this research. CUDA is a
new technology and development tools are still in their early stages.

CUDA threads do not have access to dynamic memory allocation. Excess data must be
allocated and memory management performed manually. Managing multiple memory address
spaces is another programming concern which must be handled cleanly. Nvidia GPUs do not
recover well from invalid memory access.

Communication between graphics and system memory is quite slow and applications seeking
to take advantage of the GPUs computational power need to program around this, keeping data
transfer to a minimum. It is also possible to use shared memory and GPU cache to increase
data flow efficiency.

5.8 Comparing Implementations

Figure 28 displays previous particle system implementations by Nvidia, discussed in Section 3
compared against our own particle system implementations. As previously stated the GTX275
was used to run each of these tests. Figure 28(a) shows our SRIPS implementation runs
faster than Green’s particle system implementation (Figure 28(a)) which has the same type of
interaction between particles. This is expected as Green’s implementation has more interaction
features. These results show our implementation is broadly similar to current ones and a good
base for performance investigation. Figure 28(b) compares our LRIPS system against the n-
body implementation by Nyland, Harris and Prins. These results show our system is expectedly

29

GPGPU Based Particle System Simulation

Pyarelal Knowles and Geoff Leach

30

25

P

20

—&— Nvidia particles demo
SRIPS /

15

/

10

/

Time per frame (ms)

P

,l/)

0

4,500
4,000
3,500
3,000
2,500
2,000
1,500

Time per frame (ms)

1,000
500
[¢]

50,000 100,000 150,000 200,000 250,000 300,000

Number of particles

(a) SRIPS

—o—Nvidia n-body demo |

LRIPS [

2

/

/

_—

0

/

g

20,000 40,000 60,000 80,000 100,000 120,000 140,000

Number of particles

(b) LRIPS

Figure 28: Results compared with Nvidia’s particle systems.

slower because the n-body simulation uses a clustering technique that reduces it’s computational
complexity. However our LRIPS results are still broadly within the same range as the n-body

simulation results.

5.9 Summary

Figure 29 summarises results from previous sections. To reiterate, the GTX275 performed
faster than the Q9300 CPU in all particle system cases. For SRIPS, the GPU is 40 times faster
than the quad core CPU and for LRIPS, the GPU is 79 times faster. These speed differences
are extremely high. Even for NIPS the GPU can double the performance of the CPU.

Particle System | CPU x1 | CPU x2 CPU x4 m

NIPS, 1M
SRIPS, 1M

LRIPS, 10K

22ms 14ms 11ms
2027ms 1244ms 913ms 31ms
4172ms 2079ms 1040ms 13ms

Figure 29: Particle system results in milliseconds per frame.

Double precision floating point computation does not change the time per frame for CPU
based particle systems much. However double precision computation can increase the time for
GPU based particle system performance from 2-24 times that of single precision.

The uniform grid construction time is significant but is not a bottleneck for SRIPS compu-

tation.

30

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

6 Conclusion

We found that GPU outperforms the CPU for large particle system computation, sometimes
enormously so — the GPU can perform 79 times faster than the CPU in the case of long range
interacting particles. Even the smallest GPU performance increase found in the case of non
interacting particle systems was twice as fast as the CPU computation.

For small non interacting particle systems of the 100, 000 particle range and below, the CPU
is either faster or has similar speeds to GPU based non interacting particle systems. This may
be of interest for applications with many small, different particle systems. This is a case left
for future work.

Particle systems scale very well with GPU architecture. This is due to the inherent stream
processing nature of GPUs matching the “embarrassingly parallel” characteristic of particle
systems. Particle systems do not scale as well for multithreaded CPU applications. This is
partly due to manual thread managing and complex scheduling.

Applications that require particle system data to be accessible in system memory will require
the data to be copied back from GPU memory. This copy back time is costly and for large
systems that are fast to compute, for example NIPS, may significantly decrease overall particle
system speed. Another concern with this transfer time is for very large particle systems that
take up more memory than is available. The GPU has no virtual memory so data must be
manually swapped in. In order to implement large particle systems which do not fit in graphics
memory it’s computation and rendering would require multiple passes each frame including
multiple context switches and data transfer.

In answer to the research questions in section 1:

1. We have shown huge performance improvements from CPU to GPU particle system com-
putation. There seems to be a trend that higher computational complexity particle sys-
tems receive higher performance improvements from GPU computing.

2. Introducing a graphics rendering load to the particle systems has little effect compared
to the processing time for large particle systems. There is a slight drop in performance
due to a GPU context switch.

3. Designing embarrassingly parallel algorithms is the primary limiting factor for applications
using GPU computing. Sometimes a parallel solution is not even possible. Algorithms
must be molded around GPU design traits to achieve best results. There are a number
of programming techniques that help to optimize algorithms, many of which are related
to improving data flow using GPU cache.

In this work particle systems have performed well when computed on the GPU. Moreover,
future generations of GPUs, for example Fermi, will bring dramatic increases in GPU compu-
tational power. This will open up a new realm of possibilities for particle systems. For example
games may be able to use larger particle systems of higher computational complexities. This
will increase visual realism and allow new gameplay.

7 Future work

GPU hardware is continually changing. Future work should include investigation of future
GPUs. Preliminary results for Nvidia’s GT300 (Fermi) GPUs show an approximate 400%
increase in double precision computation. Although GPUs do not currently perform well for

31

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

double precision, Fermi may bring double precision performance closer to that of single precision
performance.

OpenCL should allow particle system implementations to be switched between execution on
different processor architecture, for example Nvidia and ATI GPUs as well as CPUs. OpenCL
may also allow for load balanced particle system computation between CPU and GPU proces-
SOTS.

Particle systems too large to be computed all at once on a GPU may be of interest to
scientific applications. Previously clusters of computers have been used to perform these ex-
periments on CPUs [PSS97]. The use of GPUs and GPU computing in these clusters could
potentially give a huge performance increase.

Small particle systems were were found to process faster on the CPU in some cases. Pos-
sible future work includes investigation of applications where many small particle systems are
processed at once, for example games may have many particle systems of differing types such
as explosions, cloth and water.

Particle systems where particles are not distributed evenly requires a spatial data structure
that can adapt to this. It would be useful to investigate the performance of particle systems
using different types of spatial data structures with differing particle arrangements.

References

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In AFIPS 67 (Spring): Proceedings of the April 18-20,
1967, spring joint computer conference, pages 483-485, New York, NY, USA, 1967.
ACM.

[Ber9g] Edmund Bertschinger. Simulations of structure formation in the universe. Annual
Review of Astronomy and Astrophysics, 36:599-654, Sep 1998.

[BGOS] John S. Beeckler and Warren J. Gross. Particle graphics on reconfigurable hardware.
ACM Trans. Reconfigurable Technol. Syst., 1(3):1-27, 2008.

[BLi77] James F. Blinn. Models of light reflection for computer synthesized pictures. SIG-
GRAPH Comput. Graph., 11(2):192-198, 1977.

[Gre07] Simon Green. CUDA Particles. Nvidia, November 2007.

[Har08] Mark Harris. Cuda fluid simulation in nvidia physx. In SIGGRAPH Asia 2008:
Parallel Computing for Graphics: Beyond Programmable Shading, December 2008.

[KCO05] Andreas Kolb and Nicolas Cuntz. Dynamic particle coupling for gpu-based fluid
simulation. Proc. 18th Symposium on Simulation Technique, pages 722-727, 2005.

[KLRS04] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision
detection for large particle systems. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 123131, New
York, NY, USA, 2004. ACM.

[KSWO04] Peter Kipfer, Mark Segal, and Riidiger Westermann. Uberflow: a gpu-based particle
engine. In HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 115-122, New York, NY, USA, 2004. ACM.

32

GPGPU Based Particle System Simulation Pyarelal Knowles and Geoff Leach

[Lat04]

[LHvdS01]

[Moo65]

[MSTO04]

[NHPO7]

[PFO5]

[PhoT75]

[PSS97]

[Ree83]

[Ste81]

[Syl07]

[TZ99]

[VMTO04]

Lutz Latta. Building a million particle system. In Game Developers Conference
2004, 2004.

Erik Lindahl, Berk Hess, and David van der Spoel. Gromacs 3.0: a package
for molecular simulation and trajectory analysis. Journal of Molecular Modeling,
7(8):306-317, 2001.

Gordon Moore. Moore’s Law. 1965. URL: http://www.intel.com/technology/
mooreslaw/.

Matthias Miiller, Simon Schirm, and Matthias Teschner. Interactive blood simula-
tion for virtual surgery based on smoothed particle hydrodynamics. Technol. Health
Care, 12(1):25-31, 2004.

Lars Nyland, Mark Harris, and Jan Prins. Fast n-body simulation with cuda. In
Hubert Nguyen, editor, GPU Gems 3, chapter 31. Addison Wesley Professional,
August 2007.

Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation (Gpu Gems).
Addison-Wesley Professional, 2005.

Bui Tuong Phong. Illumination for computer generated pictures. Commun. ACM,
18(6):311-317, 1975.

David W. Pfitzner, John K. Salmon, and Thomas Sterling. Halo world: Tools
for parallel cluster finding inastrophysical n-body simulations. Data Min. Knowl.
Discov., 1(4):419-438, 1997.

W. T. Reeves. Particle systems—a technique for modeling a class of fuzzy objects.
ACM Trans. Graph., 2(2):91-108, 1983.

David Stevenson. A proposed standard for binary floating-point arithmetic: draft
8.0 of IEEE Task P754. IEEE Computer Society Press, 1981.

Sebastian Sylvan. Particle System Simulation and Rendering on the Xbox 360 GPU,
2007.

M. S. Tillack and J. D. Zhang. Particle dynamic simulation of free surface granular
flows. June 1999.

Pascal Volino and Nadia Magnenat-Thalmann. Animating complex hairstyles in
real-time. In VRST ’04: Proceedings of the ACM symposium on Virtual reality
software and technology, pages 41-48, New York, NY, USA, 2004. ACM.

33

